2022 Fiscal Year Research-status Report
Refining the graph parameter hierarchy for fine-grained algorithms
Project/Area Number |
21K11752
|
Research Institution | Nagoya University |
Principal Investigator |
大舘 陽太 名古屋大学, 情報学研究科, 准教授 (80610196)
|
Project Period (FY) |
2021-04-01 – 2026-03-31
|
Keywords | グラフ構造パラメータ / FPTアルゴリズム |
Outline of Annual Research Achievements |
グラフ構造パラメータが作る計算量階層の詳細化によるアルゴリズム設計と計算量解析を研究し,主に以下の成果を得た. ・これまでに得られている頂点インテグリティに対するアルゴリズムの一部を統一して一般化するアルゴリズム的メタ定理を示した.単項二階論理で記述できる問題に対する木幅を用いたアルゴリズム的メタ定理(Courcelleの定理)が有名だが,本結果は対象範囲を木幅限定グラフからから頂点インテグリティ限定グラフに狭める一方,扱える問題を大幅に広げるものである.また,様々な問題がこのアルゴリズム的メタ定理で解決できることも示した.特に,Defective彩色問題や,種々の最小アライアンス発見問題が頂点インテグリティによるFPTアルゴリズムをもつことを初めて示した. ・組合せ遷移問題に対してグラフ構造パラメータに関する研究を行い,結果として様々問題を一度に解決するアルゴリズム的メタ定理を示した.ここでも単項二階論理を用い,近傍多様性というグラフ構造パラメータに関する結果を示した.また,木深度に関してもアルゴリズム的メタ定理を示すとともに,その一般化の限界を与える困難性も示した. ・有向グラフ上での独立集合スライディング問題を導入し,様々な場合の計算量を解明した.特に,木を向きづけしたグラフに対してこの問題が多項式時間で解けることを示した. ・グラフ上のトークンの逐次交換問題を研究し,これまでに知られていた多項式時間可解性をすべて含む一般的な解法を与えた.また,NP困難性を示すための一般的な定理も与え,弦グラフなどに対する困難性がそこから導かれることも示した.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
本課題の中心的研究対象である頂点インテグリティに関し,あるアルゴリズム的メタ定理を示すことができた.これは,これまでに得られている頂点インテグリティに対するアルゴリズムの一部を統一して一般化するもので,今後の研究においての理論的基礎を与えるものである.
|
Strategy for Future Research Activity |
ここまでに得られた頂点インテグリティに関するアルゴリズム的メタ定理の適用範囲の拡大またはその限界の解明を行っていく.また,組合せ遷移問題に関するアルゴリズム的メタ定理をさらに研究する.特に,組合せ遷移問題の頂点インテグリティに関するパラメータ化計算量の解明は今後の課題である.
|
Causes of Carryover |
国際出張なども行えるようになってきたため,予定以上の出費があったものの前年度からの繰越が大きかったため次年度使用額が生じた.今後,研究発表などのための国際出張などが更に増える見込みのため,そちらに充当する.
|
Research Products
(21 results)