2023 Fiscal Year Final Research Report
Research on Safe Posture Identification: Modeling the Inclined Plane Mowing Behaviors of Skilled Workers via Multi-sensors Big Data Analysis
Project/Area Number |
21K11876
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60060:Information network-related
|
Research Institution | Tokyo University of Technology |
Principal Investigator |
WU BO 東京工科大学, コンピュータサイエンス学部, 助教 (70802031)
|
Co-Investigator(Kenkyū-buntansha) |
呉 鳶 愛国学園大学, 人間文化学部, 准教授 (30822423)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 草刈り動作解析 / 農作業経験の可視化 / 経験的モード分解 / 身体運動計測技術の応用 / 農作業安全対策 |
Outline of Final Research Achievements |
The research team conducted surveys and experiments in terraced paddy fields located in a mountainous area. We collected data on the physical movements of skilled mowing operators, with a focus on individuals predominantly over the age of 65. We utilized a variety of analytical methods to identify factors that contribute to work safety. This analysis was conducted based on the classification of movement patterns among skilled mowing operators. It was found that efficient patterns have a higher risk of falling. As a result of analyzing the mowing motion by breaking it down into sub-actions based on joint angle calculations, we found differences and similarities in the frequency and amplitude of the sub-actions (pre-cutting) among mowing operators with different levels of experience. Additionally, we observed that physical characteristics have effects on the stability of the mowing operators. The above research results were published in academic papers and other scholarly publications.
|
Free Research Field |
人間科学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は、凸凹のある急峻な法面における安全な草刈り作業パターンを特定し、熟練草刈り作業者の経験を可視化する方法として、草刈作業時の動作の細分化に関する分析手法を構築した。これらの実用性のある結果は、新人を対象とする教育とトレーニングに有用な知見を提供するとともに、草刈り転倒リスク検知システムを開発するためのデータ蓄積としても活用できる。それに加え、本研究で構築した分析手法は、今後の人間身体動作の分析にも活用されることが期待できる。
|