2023 Fiscal Year Final Research Report
Development of parallel solvers with spectral-like resolution for three-dimensional incompressible turbulence
Project/Area Number |
21K11927
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60100:Computational science-related
|
Research Institution | Aichi Institute of Technology |
Principal Investigator |
Okamoto Naoya 愛知工業大学, 工学部, 准教授 (80547414)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 乱流 / シミュレーション / 並列計算 / 高解像度 |
Outline of Final Research Achievements |
Global-scale flow phenomena such as the atmosphere and oceans, as well as various flow phenomena of societal interest, are in a state of turbulent flow. Computational science methods, which have made remarkable progress, have become powerful tools for predicting and elucidating turbulent phenomena. In this study, we have developed a computational method based on a computational technique that makes extensive use of local communication, which is well suited to today's massively parallel computers, and we have systematically investigated the effect of rounding error on the turbulent DNS for highly turbulent flows that have extreme events. It was found that more turbulent flows are more likely to be affected by rounding errors.
|
Free Research Field |
計算流体物理学
|
Academic Significance and Societal Importance of the Research Achievements |
フーリエ・スペクトル法は高精度であるものの、大域的通信を多用するため、高精度でありながら計算コストの低い乱流並列数値計算手法の開発が望まれている。本研究では、可能な限り局所的な通信を多用する乱流並列数値計算手法の開発に関する知見が得られており、それゆえ昨今の超並列計算機を利用する研究に貢献する知見が得られている。また、大規模な計算が身近になり、ますます乱れの強い乱流の直接数値計算が行われつつある。そのような大規模計算においては、丸め誤差が計算の結果に与える影響の知見が重要であるが、本研究ではその知見に関する成果が富岳での計算を利用し得られつつある。
|