2022 Fiscal Year Research-status Report
グラフ構造のダイナミクスを模倣する確率的形式グラフ体系の学習可能性の探究
Project/Area Number |
21K12021
|
Research Institution | Fukuoka Institute of Technology |
Principal Investigator |
正代 隆義 福岡工業大学, 情報工学部, 教授 (50226304)
|
Co-Investigator(Kenkyū-buntansha) |
宮原 哲浩 広島市立大学, 情報科学研究科, 准教授 (90209932)
内田 智之 広島市立大学, 情報科学研究科, 准教授 (70264934)
鈴木 祐介 広島市立大学, 情報科学研究科, 助教 (10398464)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 機械学習 / 形式グラフ体系 / 確率的形式グラフ体系 / グラフ生成規則 / グラフ系列マイニング |
Outline of Annual Research Achievements |
本研究課題では、グラフ構造データの生成過程を形式化した体系として確率的形式グラフ体系の導入を行い、その学習理論を構築することを目標とする。2022年度は、2021年度に引き続き、形式グラフ体系の計算論的学習理論に基づく基礎的研究を行った。また、計算論的学習理論における学習モデルの精度評価を行うために、グラフ畳み込みネットワークと質問学習モデルの協調手法を提案し、その有効性を示した。具体的には次のとおりである。 (1) 計算論的学習理論の観点から、次数に制限のあるパラメータ化された遺伝的形式グラフ体系(HFGS)によって定義されるHFGS言語のサブクラスの多項式時間PAC学習可能性を明らかにした。具体的には、HFGSのクラスを、(a)グラフ書き換え規則の数の上限と各種遺伝的性質、(b)HFGSグラフ言語の木幅と次数の上限、(c)グラフパターンの次数と超辺次元の上限、(d)グラフ書き換え規則の変数の個数、本体アトムの数、述語記号の引数の数の上限により階層付けして、グラフ言語の木幅以外のパラメータが定数ならば多項式時間PAC学習可能であることを証明した。 (2) 質問学習モデルはAngluin(1988)により提案された計算論的学習理論における機械学習モデルの一つである。質問学習モデルは、常に正答を返すオラクルを仮定して機械学習における計算量などの解析を行うモデルである。一方、最近の小田ら(2022)の研究では、木構造データベースに対する二値分類問題を著しく高い精度で計算するグラフ畳み込みネットワーク(GCN)が報告されている。本研究課題では、超高精度GCNをオラクルとする無順序木パターンの質問学習モデルを提案した。そして、そのモデル上で二値分類問題、無矛盾性問題、可視化問題の3つの問題の精度を評価した。それにより、超高精度GCNをオラクルとする質問学習手法の有効性を示した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
本研究課題の研究期間内における具体的な到達目標の一つとして、形式グラフ体系とその生成グラフ言語に対する計算論的学習理論の構築がある。本年度は、計算論的学習理論における主要な学習モデルの一つである質問学習モデルに焦点を当て、近年、注目されているグラフ畳み込みネットワーク(GCN)との協調手法を提案した。そしてGCNをオラクルとする質問学習モデルの人工データおよび実データによる詳細な学習精度分析を行った。最終年度は、これまでに得られた学習精度に関するデータ分析をもとに形式グラフ体系に対する確率的評価を行う。以上より、研究はおおむね順調に進展していると考えられる。
|
Strategy for Future Research Activity |
2022年度の研究成果を踏まえ、確率的形式グラフ体系の学習理論を展開する。2023年度は、形式グラフ体系に対して、グラフ畳み込みネットワーク(GCN)をオラクルとする質問学習モデルの人工データおよび実データによる詳細な学習精度分析を行う。それにより、形式グラフ体系の表現クラスに対する学習精度に関する確率的評価を行う。また、グラフパターン照合問題に対する効率の良い並列アルゴリズムを提案し、形式グラフ体系に対する機械学習のソフトウェア及びハードウェア両面からの高速化を議論する。最後に確率的形式グラフ体系の研究成果の公表に向けて各課題の総括を行う。
|
Causes of Carryover |
2021年度に引き続き、2022年度も国際会議における研究発表のための国外出張旅費としての支出を行うことができなかった。そのことが次年度使用額が生じた主な理由である。その他、計算機実験のためのPC購入、研究成果公表のための論文誌掲載料の支出は予定通りであった。2023年度は、計算機実験におけるPC高速化のための補助装置購入、研究成果公表のための論文誌掲載費をメインに支出を行う。また、2023年度後半には国際会議における発表を見込んでおり、そのための国外出張旅費として支出を行う計画である。
|
Research Products
(8 results)