• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data

Research Project

Project/Area Number 21K12034
Research InstitutionThe University of Aizu

Principal Investigator

Rage Uday・Kiran  会津大学, コンピュータ理工学部, 准教授 (20874324)

Co-Investigator(Kenkyū-buntansha) 是津 耕司  国立研究開発法人情報通信研究機構, ユニバーサルコミュニケーション研究所統合ビッグデータ研究センター, 研究センター長 (40415857)
Project Period (FY) 2021-04-01 – 2025-03-31
KeywordsBig data / high utility patterns / spatial information / data mining
Outline of Annual Research Achievements

We have developed three novel pattern mining algorithms to discover useful patterns in the air pollution data by modeling it as uncertain, fuzzy, and certain data. The discovered patterns were described in the publications.

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

The work is going smoothly by collecting the data of 5+ years of air pollution data. The co-researcher from NICT helped us in speedup the task smoothly. The portion of the work carried in the previous year can be found at https://github.com/UdayLab/PAMI/blob/main/notebooks/knowledgeDiscoveryInData.ipynb

Strategy for Future Research Activity

This year we plan to develop a real-world application for the air pollution data analytics. It involves developing a data warehouse and our algorithm to uncover hidden patterns in global air pollution data.

Causes of Carryover

Purchase of articles for research.

  • Research Products

    (4 results)

All 2023

All Journal Article (4 results) (of which Int'l Joint Research: 4 results,  Open Access: 1 results)

  • [Journal Article] Discovering Geo-referenced Frequent Patterns in the Uncertain Geo-referenced Transactional Databases2023

    • Author(s)
      Likhitha Palla,Veena Pamalla, Rage Uday Kiran, Zettsu Koji
    • Journal Title

      PAKDD

      Volume: 1 Pages: 29~41

    • DOI

      10.1007/978-3-031-33380-4_3

    • Int'l Joint Research
  • [Journal Article] A Novel Explainable Link Forecasting Framework for the Temporal Knowledge Graphs Using Time-Relaxed Cyclic and?Acyclic Rules2023

    • Author(s)
      Rage Uday Kiran, Maharana Abinash, Polepalli Krishna Reddy
    • Journal Title

      PAKDD

      Volume: 1 Pages: 264~275

    • DOI

      10.1007/978-3-031-33374-3_21

    • Int'l Joint Research
  • [Journal Article] Discovering Fuzzy Partial Periodic Patterns in Quantitative Irregular Multiple Time Series2023

    • Author(s)
      Veena Pamalla, Likhitha Palla, Kiran R. Uday, Luna Jose Maria, Fournier-Viger Philippe, Zettsu Koji
    • Journal Title

      IEEE FUZZ

      Volume: 1 Pages: 1-7

    • DOI

      10.1109/FUZZ52849.2023.10309773

    • Int'l Joint Research
  • [Journal Article] Mining Periodic-Frequent Patterns in Irregular Dense Temporal Databases Using Set Complements2023

    • Author(s)
      Veena Pamalla, Sreepada Tarun, Kiran Rage Uday, Dao Minh-Son, Zettsu Koji, Watanobe Yutaka, Zhang Ji
    • Journal Title

      IEEE Access

      Volume: 11 Pages: 118676~118688

    • DOI

      10.1109/ACCESS.2023.3326419

    • Open Access / Int'l Joint Research

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi