• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

Research on Koszul AS-regular algebras from the categorical view of Non-commutative algebraic geometry and Representation theory

Research Project

Project/Area Number 21K13781
Research InstitutionTokyo University of Science

Principal Investigator

板場 綾子  東京理科大学, 教養教育研究院葛飾キャンパス教養部, 講師 (10801178)

Project Period (FY) 2021-04-01 – 2025-03-31
KeywordsAS 正則環 / コシュール多元環 / Calabi-Yau 多元環 / Beilinson 多元環 / 非可換射影スキーム / AR クイバー / オーレ拡大
Outline of Annual Research Achievements

3次元quadratic AS正則環 Aに対応するBeilinson algebra のAuslander- Reiten 理論での振る舞いを考察し, 多元環の表現論の手法を用いてAR-quiver におけるregular module を考察し, regular module たちは AR-quiver の中で 幾何でパラメトライズされることが証明したが、さらにこれらはAに対応するBeilinson algebra 上のsimple regular module が2-representation tame 型であることが同値であることを予想し、Type S'の場合について解決していたが、他の残りのほとんどのケースでもAの中心の生成元を特定し、さらに上記の予想の解決の完成に近づいた。
以前、任意の3次元コシュールAS正則環の代数的分類を行ったが、一般には4次元以上のコシュールAS正則環の分類や性質は特定されていない。任意の3次元コシュールAS正則環に対し、オーレ拡大とよばれる非可換環版の環拡大を施して得られる環は、全て4次元コシュールAS正則環となることが知られている理科大PDの松野仁樹氏との共同研究により、任意の3次元コシュールAS正則環のオーレ拡大として得られる全ての4次元コシュールAS正則環は幾何的代数の定義に現れる点スキームに関する(G1)条件を満たすことを示した。以前の代数的分類を用いて、具体的な4次元コシュールAS正則環がいつ幾何的代数になるか、つまり、幾何的代数の定義に現れる関係式に関する(G2)条件をいつ満たすかを、2023年度は特にType SとType S’に対して結果を得た。この他の楕円曲線を含む全ての場合において解決する方法も確立しており、研究集会等での講演および学術論文への投稿を準備中である。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

本研究課題の中心テーマのひとつに関した結果を得て、こちらの投稿準備を行うことができたためである。

Strategy for Future Research Activity

今後の研究の推進方策は、本研究課題のテーマの完成に向けた研究に取り掛かる。3次元quadratic AS正則環 Aに対応するBeilinson algebra のAuslander- Reiten 理論での振る舞いを考察し, 多元環の表現論の手法を用いてAR-quiver におけるregular module を考察し, regular module たちは AR-quiver の中で 幾何でパラメトライズされることが証明したが、
さらにこれらはAに対応するBeilinson algebra 上のsimple regular module がIyama-herschend-Oppermannの意味での2-representation tame 型であることが同 値であることを予想し、Type S'の場合については解決できた。他の残りのケースでもAの中心の生成元を特定し、さらに上記の予想の解決の完成に 向ける。

Causes of Carryover

新型コロナウィルス感染症拡大防止のため,実際に現地に赴いての研究打ち合わせや研究集会などに参加や講演が当初の予定通りにできなかった。次年度使用分 は,2024年に実施する国内外の出張旅費や研究打ち合わせの経費等に使用する。

  • Research Products

    (10 results)

All 2024 2023 Other

All Journal Article (2 results) Presentation (7 results) (of which Int'l Joint Research: 2 results,  Invited: 3 results) Remarks (1 results)

  • [Journal Article] Quantum projective planes and Beilinson algebras of 3-dimensional quantum polynomial algebras for Type S'2023

    • Author(s)
      10.A. Itaba
    • Journal Title

      arXiv

      Volume: なし Pages: 1-18

  • [Journal Article] Type S’ に対する非可換射影平面とquantum polynomial algebra のBeilinson 多元環について2023

    • Author(s)
      板場綾子
    • Journal Title

      研究集会「第16回数論女性の集まり (WINJ2023)」 (東京工業大学) 報告集

      Volume: 1 Pages: 17-23

  • [Presentation] S型の3次元2次Calabi-Yau AS正則多元環の次数付きOre拡大2024

    • Author(s)
      松野仁樹,板場綾子
    • Organizer
      2024年度日本数学会年会(大阪公立大学杉本キャンパス)
  • [Presentation] Type S’ に対する非可換射影平面と quantum polynomial algebra の Beilinson 多元環 について2023

    • Author(s)
      板場綾子
    • Organizer
      研究集会「第16回数論女性の集まり」(WINJ2023) (東京工業大学)
  • [Presentation] 中心上有限生成な非可換射影平面とBeilinson 多元環2023

    • Author(s)
      板場綾子
    • Organizer
      中心上有限生成な非可換射影平面とBeilinson 多元環, 野田代数幾何学シンポジウム 2023. (東京理科大学野田キャンパス)
    • Invited
  • [Presentation] Quantum projective planes and Beilinson algebras of 3-dimensional quantum polynomial algebras for Type S2023

    • Author(s)
      Ayako Itaba
    • Organizer
      The 55th Symposium on Ring Theory and Representation Theory, (Osaka Metropolitan University)
  • [Presentation] 非可換射影平面と Type S’ に対する3次元 quantum polynomial algebra の Beilinson 多元環2023

    • Author(s)
      板場綾子
    • Organizer
      日本数学会2023年度秋季総合分科会 (東北大学川内北キャンパス)
  • [Presentation] Quantum projective planes finite over their centers and Beilinson algebras2023

    • Author(s)
      Ayako Itaba
    • Organizer
      The ninth China-Japan-Korea International Conference on Ring and Module Theory (Incheon National University, Republic of Korea)
    • Int'l Joint Research / Invited
  • [Presentation] Quantum projective planes finite over their centers and Beilinson algebras2023

    • Author(s)
      Ayako Itaba
    • Organizer
      中国科学技術大学数学科学研究院(呉文俊数学重点実験室代数学系列報告之234)
    • Int'l Joint Research / Invited
  • [Remarks] 東京理科大学研究者情報データベース

    • URL

      https://www.tus.ac.jp/ridai/doc/ji/RIJIA01Detail.php?act=pos&kin=ken&diu=5e8e

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi