2022 Fiscal Year Final Research Report
Discrete Differential Geometry Approach to Kinematics and Shape Feedback Control for Surface Robots
Project/Area Number |
21K14127
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 20020:Robotics and intelligent system-related
|
Research Institution | Shinshu University |
Principal Investigator |
|
Project Period (FY) |
2021-04-01 – 2023-03-31
|
Keywords | 曲面形状ロボット |
Outline of Final Research Achievements |
This study focuses on the structure and kinematics of robotic surfaces that facilitate shape estimation and control. Starting from differential geometry, we developed a method for shape reconstruction and finding a surface where a point on the surface coincides with a given position, which is feasible for real-time computation. We also realized a robotic S-isothermic surface with 25 truncated conical actuators, realized its conformal deformation in a plane, and constructed inverse kinematics algorithms for three types of robots. In particular, the surface model with piecewise constant mean curvature devised in this study is expected to be helpful.
|
Free Research Field |
ロボット工学
|
Academic Significance and Societal Importance of the Research Achievements |
曲面は家具,衣服,建築物や生物といった多くの物体の表層に位置し「かたち」の根幹をなしている.そのため,富んだ表現力を持つ曲面形状ロボットは工学分野での利用にとどまらず,様々な学問の個別の研究対象もしくは横断的な研究を促進する活性剤となると考えられる.しかし,形の制御を実現するうえで,形状推定にかかる計算量や制御・運動学理論の複雑さが問題であった.本研究では,この問題を双等温曲面や平均曲率一定曲面の活用により解決した.曲面形状ロボットに関する研究の重要な方向性を示すことができたと考えられる.
|