• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Non-invasive lumbar myelography using dual-energy CT and deep learning

Research Project

  • PDF
Project/Area Number 21K15854
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionAkita Cerebrospinal and Cardiovascular Center

Principal Investigator

Shinohara Yuki  秋田県立循環器・脳脊髄センター(研究所), 放射線医学研究部, 主任研究員 (60462470)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywords腰椎ミエログラフィー / デュアルエネルギーCT / 逐次近似画像再構成 / 仮想単色X線画像 / 金属アーチファクト低減技術 / 手術支援画像 / 腰部脊柱管狭窄症 / 腰椎椎間板ヘルニア
Outline of Final Research Achievements

The purpose of this study was to create lumbar spine surgery-assisted image from non-contrast dual-energy CT (DECT). In virtual monochromatic imaging (Mono+, Siemens), the best contrast between dural canal and ligamentum flavum or dural canal and intervertebral disc was 100 keV and 190 keV images, respectively. However, these contrasts in 100 kV/Sn140 kV mixed images were higher than those in Mono+ images and improved as the strength of advanced modeled iterative reconstruction (ADMIRE, Siemens) was increased (3<4<5). The imaging findings of the dural canal and nerve roots in non-contrast CT myelography (NC-CTM) generated from mixed images with ADMIRE5 were consistent with the intraoperative findings. In NC-CTM, favorable image quality was obtained by using dedicated metal artifact reduction software (iMAR, Siemens). As a result of training and cross-validation using 3D U-Net, the NC-CTM generated from the trained 3D U-Net model showed high similarity with the training images.

Free Research Field

放射線医学

Academic Significance and Societal Importance of the Research Achievements

本研究では非造影DECTと深層学習による腰椎硬膜管/神経根画像(NC-CTM)作成の可能性を示した。腰椎低侵襲除圧術の術前画像作成にはMRMとCTの両者を用いることが多いが,MRI検査の長い撮像時間や体内金属・閉所恐怖症等による撮影不可,MRMとCTとの画像融合時の位置ずれなどの課題がある.造影剤を用いずに通常の腰椎CTとほぼ同等の被曝線量で,かつ一回の短時間DECT撮影でNC-CTMを作成できれば,患者に与えるリスクや負担も減らすことができる。また深層学習の応用によりNC-CTMを自動生成する技術が発展すれば,作成者による完成画像の精度の違い,即ち再現性の問題の解決にも繋がる可能性がある。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi