2023 Fiscal Year Final Research Report
In-Storage Accelerator Architectures for Large-Scale Sparse Matrix Processing
Project/Area Number |
21K17720
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60040:Computer system-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
Chu Thiem Van 東京工業大学, 科学技術創成研究院, 助教 (80838235)
|
Project Period (FY) |
2021-04-01 – 2024-03-31
|
Keywords | 疎行列処理 / 疎行列疎行列積 / データフロー / アーキテクチャ / FPGA |
Outline of Final Research Achievements |
This study aims to develop a comprehensive sparse matrix processing architecture, including an in-storage accelerator architecture, to perform large-scale sparse matrix processing with high performance and efficiency. As the first step, the research focuses on the basic operation of sparse-sparse matrix multiplication, advancing the study of a high-performance and efficient architecture, and implementing and evaluating a hardware prototype using FPGA (Field-Programmable Gate Array). Major achievements include the presentation of a paper at the Asia and South Pacific Design Automation Conference (ASP-DAC'24), three invited talks, and two awards.
|
Free Research Field |
計算機システム
|
Academic Significance and Societal Importance of the Research Achievements |
本研究の成果は,疎行列処理の高速化と高効率化を実現することで,ビッグデータ解析,機械学習,科学計算の複雑なシミュレーションなど多くのアプリケーションにおいて重要な計算カーネルの性能向上および計算資源の節約に寄与する.本研究によって提案された手法は,学術的にはアーキテクチャおよびハードウェア設計に新たな知見を提供し,社会的にはデータ分析や人工知能などの発展に大きな影響を与えると期待できる.
|