• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

Secure, Precise and Fast Sequential Pattern Mining with Learning Data Distribution

Research Project

Project/Area Number 21K17746
Research InstitutionTokyo Institute of Technology

Principal Investigator

Le Hieu・Hanh  東京工業大学, 情報理工学院, 助教 (60813996)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsdata mining / privacy / medical data
Outline of Annual Research Achievements

This study aims to present a method for eliminating the need for trust in sequential pattern mining (SPM) while preserving privacy and providing secure, precise, and fast sequential data analysis which carefully learns the data distribution. The fundamental algorithms of sequential data analysis on sequential medical data without privacy-preserving have been studied this year. In detail, several methods to analyze the sequence variants from more than one hospital have been designed and evaluated. The basic privacy-preserving SPM has also been studied in detail and the initial experimental results have been observed. For estimating the frequency of the sequences, an appropriate amount of noise is added to the original frequency to ensure privacy.

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

The basic algorithm has been developed. However, evaluation process has been delayed due to the constraint of using sensitive data.

Strategy for Future Research Activity

The evaluation process will be improved by using other datasets which are easier to use.
Moreover, further improving the performance of the privacy-preserving data analysis will be studied.

  • Research Products

    (8 results)

All 2023 2022

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 1 results) Presentation (5 results)

  • [Journal Article] Methods for Analyzing Medical-Order Sequence Variants in Sequential Pattern Mining for Electronic Medical Record Systems2023

    • Author(s)
      Hieu Hanh Le, Tatsuhiro Yamada, Yuichi Honda, Takatoshi Sakamoto, Ryosuke Matsuo, Tomoyoshi Yamazaki, Kenji Araki, Haruo Yokota
    • Journal Title

      ACM Transactions on Computing for Healthcare

      Volume: 4, issue 1, no. 3 Pages: 1~28

    • DOI

      10.1145/3561825

    • Peer Reviewed
  • [Journal Article] シーケンスバリアントの比較と電子カルテの分析への応用2023

    • Author(s)
      Yuqing Li, Le Hieu Hanh, 松尾亮輔, 山崎友義, 荒木賢二, 横田治夫
    • Journal Title

      日本データベース学会データドリブンスタディーズ論文誌

      Volume: 1, no.5 Pages: 1-8

    • Peer Reviewed / Open Access
  • [Journal Article] Comparison of Sequence Variants and the Application in Electronic Medical Records2022

    • Author(s)
      Yuqing Li, Hieu Hanh Le, Ryosuke Matsuo, Tomoyoshi Yamazak, Kenji Araki, Haruo Yokota
    • Journal Title

      Proceeding of the 33rd International Conference on Database and Expert Systems Applications (DEXA2022), Part 2

      Volume: 13427 Pages: 117~130

    • DOI

      10.1007/978-3-031-12426-6_10

    • Peer Reviewed
  • [Presentation] 動的に医療指示種類を変更したシーケンス解析における特徴的な治療パターン抽出2023

    • Author(s)
      黒川 健人, Le Hieu Hanh, 松尾 亮輔, 山崎 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第15回データ工学と情報マネジメントに関するフォーラム
  • [Presentation] COVID-19に関する頻出医療指示パターンの時期による差異と差異発生時期の可視化2023

    • Author(s)
      Zhao Zitai, Le Hieu Hanh, 松尾 亮輔, 山﨑 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第15回データ工学と情報マネジメントに関するフォーラム
  • [Presentation] クラスタリングを用いた多病院間の頻出医療指示パターン比較2023

    • Author(s)
      安光 夕輝, Le Hieu Hanh, 松尾 亮輔, 山﨑 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第15回データ工学と情報マネジメントに関するフォーラム
  • [Presentation] COVID-19の異なる医療機関と時期における頻出治療パターンの比較2022

    • Author(s)
      Zhao Zitai, Le Hieu Hanh, 松尾 亮輔, 山﨑 友義, 荒木 賢二, 横田 治夫
    • Organizer
      第42回医療情報学連合大会
  • [Presentation] 数医療機関間の頻出医療指示パターン比較手法2022

    • Author(s)
      横田治夫, Le Hieu Hanh, Li Yuqing, 松尾亮輔, 山﨑友義, 荒木賢二
    • Organizer
      第26回日本医療情報学会春季学術大会

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi