• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Graph clustering based on multimodal data fusion and its application to retrieval

Research Project

  • PDF
Project/Area Number 21K17861
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 62020:Web informatics and service informatics-related
Research InstitutionNagaoka University of Technology

Principal Investigator

Harakawa Ryosuke  長岡技術科学大学, 工学研究科, 准教授 (20787022)

Project Period (FY) 2021-04-01 – 2024-03-31
Keywordsマルチモーダル解析 / クラスタリング / グラフ理論 / 複雑ネットワーク / 情報検索
Outline of Final Research Achievements

This research aimed to develop multimodal data integration methods that can deal with missing modalities and improve the accuracy of graph clustering to enable users to search for desired information. We conducted researches about “construction of a simultaneous optimization method for latent feature extraction and graph clustering with missing modality interpolation,”' “construction of a graph clustering method that introduces confidence estimation,” and “application of graph clustering to information retrieval.” We succeeded in developing these methods and achieved the original purpose.

Free Research Field

マルチメディアデータ解析

Academic Significance and Societal Importance of the Research Achievements

ソーシャルネットワーキングサービス上の映像やタグ付き画像等のマルチモーダルデータが増加し続けている.蓄積されたビッグデータは,ウェブ情報学や計算社会科学などの様々な領域において活用されている.しかしながら,情報検索を行うユーザに視点に立つと,自らが望む情報を検索することが困難な情報洪水と呼ばれる問題を引き起こしている.本研究では,情報洪水問題の解決に資する基盤技術の構築に成功した.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi