2022 Fiscal Year Research-status Report
体腔液細胞診におけるAI診断の開発-細胞像変化への対応と標本作製技術の検討-
Project/Area Number |
21K18077
|
Research Institution | Nagoya University |
Principal Investigator |
池田 勝秀 名古屋大学, 医学系研究科(保健), 准教授 (80568254)
|
Project Period (FY) |
2021-04-01 – 2025-03-31
|
Keywords | 体腔液細胞診 / AI / Deep Learning / Liquid-based cytology |
Outline of Annual Research Achievements |
前年度に解析したAI判定と細胞診処理溶液との関係性を米雑誌に投稿し、12月に発刊された(Relationship between liquid-based cytology preservative solutions and artificial intelligence: Liquid-based Cytology specimen cell detection using YOLOv5 deep convolutional neural network. Acta Cytol. 2022;66(6):542-550.)。今年度は5種類の細胞株を使用して、Deep Learningによる深層学習モデルの作成を行い、AIによる細胞検出、細胞分類を実施した。標本作製法としてLBC法であるSurePath法、ThinPrep法、従来法であるAutoSmear法を用いて標本作製し、標本作製法がAI解析におよぼす影響を検討した。 細胞形態像は解析結果に大きな影響を与えていることが判明し、学習モデルを作成した標本作製方法と検出する作製方法が異なる場合、細胞分類率は99.0%から54.6%まで低下することが明かとなった。さらに、学習させる細胞種類数が多くなればなるほど、細胞検出率は低下し、この二者間には相関関係がみられた。これらの研究結果から、標本作製方法はAI細胞検出に大きな影響を与えており、高検出率を望むためには、同一の方法が選択させるべきだと結論付けている。また、汎用性の高い深層学習モデル作成のためには、様々な標本作製方法で作製した細胞を学習させる必要があることを示唆している。本内容は、American Journal of Clinical PathologyおよびCytopathologyに投稿し、受理されている。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
当初予定していた検討を実施し、結果が得られている。前年度までに得られた知見を加味し、臨床検体に応用すべく条件を設定している。これまで物体検出アルゴリズムとしてYOLOv5を使用してきているが、YOLOv7、YOLOv8が公開され、インスタンス・セグメンテーションが容易に可能となるアルゴリズムが出現している。現在、これらのアルゴリズムを用いた検討が行えるように、PCを再セットアップ中である。また、Deep Learning条件(細胞数、batch数、epoch数、画素数、撮影条件)を模索している。
|
Strategy for Future Research Activity |
これまで行ってきたバウンディングボックスによる物体検出だけではなく、個々の細胞の領域までも検出するインスタンス・セグメンテーションを行うことにより、より細胞標本に適したアルゴリズムを選定できると考えている。加えて、体腔液試料を用いたAI判定を可能とするために、データ収集、アノテーションを進めていく予定である。
|
Causes of Carryover |
予定していた市販細胞株の購入が行えなかった。販売元の準備が遅れたためである。これに伴う細胞培養関連の費用が繰り越しとなった。次年度に当該細胞株を購入し、研究を遂行する。
|
Research Products
(3 results)