• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

汚染物質の拡散の推定と予測のための逆問題の数学手法の開拓

Research Project

Project/Area Number 21K18142
Research InstitutionThe University of Tokyo

Principal Investigator

山本 昌宏  東京大学, 大学院数理科学研究科, 教授 (50182647)

Project Period (FY) 2021-07-09 – 2027-03-31
Keywords特異拡散 / 不均質媒質 / モデリング / 逆問題 / 非整数階偏微分方程式 / 数学解析
Outline of Annual Research Achievements

令和 4 年度はコロナの感染状況が好転し、計画していた出張や研究打合せが完全でないもののかなりの程度まで回復した。そのような状況を受けて以下のように本研究を遂行した。
(1)土壌中の汚染物質の拡散などの現象は、不均質媒質中の特異拡散ととらえることができる。そのためのモデル式は色々提案されているが、ここでは時間方向に履歴の効果を考慮した非整数階拡散方程式を主要なモデル式としている。方程式は非整数階微分を含むので、伝統的な微分積分学の枠組みではなく非整数階微分積分学を近代的な関数解析的な偏微分方程式論に見合う形で完成させる必要がある。そのような基礎付けは必ずしも一通りとは限らないが、近代的偏微分方程式論に適合し、そのうえで応用にも適した理論を独自に構築し、公表した。
(2)そのようなアプローチを補完するものとして、より作用素論に基づいた非整数階偏微分方程式論をナンシー・ロレーヌ大学(フランス)の Mourad Choulli 教授と今年度も遂行した。
(3)本課題の遂行のためには、モデル式の物理パラメータの定量的な推定のために、方程式の係数やソース項を解の限定された情報で決定するという逆問題が必要不可欠になる。非整数階偏微分方程式の逆問題は現象の多様性を直接反映し、多岐にわたる。そのような逆問題について連続講義をバーリ(イタリア)で行い、研究計画の今後のグランドデザインの展望を示した。
(4)非整数階偏微分方程式の非線形理論の構築を開始した。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

昨年度からコロナ禍で主要な活動がリモートの形態となり、2022年度は対面の活動は回復したものの、環境などの現場での問題の探索、議論についてはまだ完全ではなかった。一方で理論面での成果についてはきわめて順調である。しかしながら、研究計画の遂行については想定外となる停滞はなく、次年度は現場との連携を活発にできることが想定できる。

Strategy for Future Research Activity

(1)現場には本研究計画の数理的な解析を必要としている問題と解決への要請がいろいろある。そのような問題の探索、数学解析、工学者など現場に近い研究者との連携を当初の計画通りに遂行する。現況の社会状況から、行動制限が生じる可能性は低く、適正な遂行が想定できる。
(2)理論面での研究を引き続き発展させ、現場の研究者と連携し、厳密で整合性があるだけではなく現場の課題に役立つ数学理論を構築していく。
(3)活動の様態も、研究集会の参加、成果発表、研究連絡など通常の形で実行していく。

Causes of Carryover

繰り越しをした。

  • Research Products

    (20 results)

All 2022 Other

All Int'l Joint Research (6 results) Journal Article (11 results) (of which Int'l Joint Research: 10 results,  Peer Reviewed: 11 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 3 results)

  • [Int'l Joint Research] Fudan University/Chinese University of Hong Kong/City University of Hong Kong(中国)

    • Country Name
      CHINA
    • Counterpart Institution
      Fudan University/Chinese University of Hong Kong/City University of Hong Kong
  • [Int'l Joint Research] Sapienza University of Rome/University of Parma/University of Bari(イタリア)

    • Country Name
      ITALY
    • Counterpart Institution
      Sapienza University of Rome/University of Parma/University of Bari
  • [Int'l Joint Research] Aix Marseille University/University of Nancy-Lorraine(フランス)

    • Country Name
      FRANCE
    • Counterpart Institution
      Aix Marseille University/University of Nancy-Lorraine
  • [Int'l Joint Research] Beuth Tech. Hochschule(ドイツ)

    • Country Name
      GERMANY
    • Counterpart Institution
      Beuth Tech. Hochschule
  • [Int'l Joint Research] University of Sevilla(スペイン)

    • Country Name
      SPAIN
    • Counterpart Institution
      University of Sevilla
  • [Int'l Joint Research]

    • # of Other Countries
      2
  • [Journal Article] Fractional calculus and time-fractional differential equations: revisit and construction of a theory2022

    • Author(s)
      M. Yamamoto
    • Journal Title

      Mathematics, FraMathematics, Special issue Fractional Integrals and Derivatives: “ True ”versus“ False ”

      Volume: special issue Pages: 2227 698

    • Peer Reviewed / Open Access
  • [Journal Article] Least square formulation for ill-posed inverse problems and applications2022

    • Author(s)
      E. Chung, K. Ito, M. Yamamoto
    • Journal Title

      Appl. Anal.

      Volume: 101 Pages: 5247 5261

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Simultaneous uniqueness for multiple parameters identification in a fractional diffusion-wave equation2022

    • Author(s)
      X. Jing, M. Yamamoto
    • Journal Title

      Inverse Problems and Imaging

      Volume: 16 Pages: 1199 1217

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] A Carleman estimate and an energy method for a first-order symmetric hyperbolic system2022

    • Author(s)
      G. Floridia, H. Takase, M. Yamamoto
    • Journal Title

      Inverse Problems and Imaging

      Volume: 16 Pages: 1163 1178

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Carleman estimate for the Navier-Stokes equations and applications2022

    • Author(s)
      O.Y. Imanuvilov, L. Lorenzi, M. Yamamoto
    • Journal Title

      Inverse Problems

      Volume: 38 Pages: 085006 30

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Continuation of solutions to elliptic and parabolic equations on hyperplanes and application to inverse source problems2022

    • Author(s)
      J. Cheng, M. Yamamoto
    • Journal Title

      Inverse Problems

      Volume: 38 Pages: 085005 23

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Uniqueness and numerical reconstruction for inverse problems dealing with interval size search2022

    • Author(s)
      J. Apraiz, J. Cheng, A. Doubova, E. Fernandez-Cara, M. Yamamoto
    • Journal Title

      Inverse Problems and Imaging

      Volume: 16 Pages: 569 594

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Inverse parabolic problems of determining functions with one spatial-component independence by Carleman estimate2022

    • Author(s)
      O.Y. Imanuvilov, Y. Kian, M. Yamamoto
    • Journal Title

      J. Inverse and Ill-posed Problems

      Volume: 30 Pages: 191 203

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Identification of time-varying source term in time-fractional evolution equations2022

    • Author(s)
      Y. Kian, E. Soccorsi, X.Qi, M. Yamamoto
    • Journal Title

      Commun. Math. Sci.

      Volume: 20 Pages: 53 84

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Some inverse problems for the Burgers equation and related systems2022

    • Author(s)
      J. Apraiz, A. Doubova, E. Fernandez-Cara, M. Yamamoto
    • Journal Title

      Commun. Nonlinear Sci. Numer. Simul.

      Volume: 107 Pages: 106113 23

    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] On the maximum principle for the multi-term fractional transport equation2022

    • Author(s)
      Y. Lucko, A. Suzuki, M. Yamamoto
    • Journal Title

      J. Math. Anal. Appl.

      Volume: 505 Pages: 125579 14

    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Fractional calculus and time-fractional differential equations: revisit and construction of a theory2022

    • Author(s)
      M. Yamamoto
    • Organizer
      Differential Equations and their Applications, Weekly Online Seminar V. I. Romanovskiy Institute of Mathematics, Uzbekistan Tashkent
    • Invited
  • [Presentation] Minicourse: Inverse problems for timefractional diffusion-wave equations2022

    • Author(s)
      M. Yamamoto
    • Organizer
      Summer School-Workshop on Analysis, Control & Inverse Problems for Diffusive Systems withe Application to Natural and Social Sciences Bari
    • Int'l Joint Research / Invited
  • [Presentation] Mathematics as foundation for social cooperation and case studies from steel industry to environmental issue2022

    • Author(s)
      M. Yamamoto
    • Organizer
      Classe di Scienze Fisiche, Matematiche e Naturali Messina
    • Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi