2023 Fiscal Year Final Research Report
New developments in fluid and mixed grain size granular mechanics based on Available Porosity theory
Project/Area Number |
21K18750
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 22:Civil engineering and related fields
|
Research Institution | Hiroshima University |
Principal Investigator |
Uchida Tatsuhiko 広島大学, 先進理工系科学研究科(工), 准教授 (00379900)
|
Co-Investigator(Kenkyū-buntansha) |
橋本 涼太 京都大学, 工学研究科, 准教授 (60805349)
河原 能久 広島大学, 先進理工系科学研究科(工), 名誉教授 (70143823)
井上 卓也 広島大学, 先進理工系科学研究科(工), 准教授 (20647094)
鳩野 美佐子 広島大学, 先進理工系科学研究科(工), 助教 (40837019)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Keywords | 分級 / 空隙率 / 細粒土砂 / 利用可能空隙率 |
Outline of Final Research Achievements |
By theoretically deriving a continuity equation for a mixed-grain fluvial bed sediment and comparing it with the conventional continuity equation, this study clarified the issues of active layer thickness and bed height in the calculation with the active layer concept and showed that it is important to determine the deposition height for each grain size sediment particle group based on the available porosity (AP). Experiments on the process of sediment sorting with fine sediment entrainment by water flow were conducted and compared with present method for model validation of AP theory. The relationship between particle size distribution and porosity was clarified based on the Coarse Paking and Fine Packing of two particle size groups. It was also shown that differences in porosity due to sediment deposition conditions can be evaluated by the porosity of uniformly sized particles.
|
Free Research Field |
水工学
|
Academic Significance and Societal Importance of the Research Achievements |
河床材料はメートルスケールの大きな石から大きな石の空隙や下流に存在する砂などの細粒分で構成させている.混合粒径の土砂輸送解析は河川の地形変化や土砂輸送解析に必須であるが,広域,長期解析に適する方法は確立されていない.個別の粒子を解析する個別要素法では,交換層の問題が表れないことに着目し,積分可能なオイラー型モデルでも空隙率や交換層の問題を解決することができる利用可能空隙率を提案し,その妥当性と混合粒径土砂輸送解析における有効性を示した.混合粒径粒子群の問題は地盤工学,コンクリート工学,化学工学など多くの分野に関連し,オイラー型モデルでその運動が記述できることを示したことは重要である.
|