2023 Fiscal Year Final Research Report
Enhancement of robustness and sustainability of hyperpolarized xenon NMR and novel establishments as a fundamental technology for the development of new materials
Project/Area Number |
21K18980
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 34:Inorganic/coordination chemistry, analytical chemistry, and related fields
|
Research Institution | Osaka University |
Principal Investigator |
Kimura Atsuomi 大阪大学, 大学院医学系研究科, 准教授 (70303972)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Keywords | 超偏極キセノンNMR / 超偏極キセノン生成装置の改良 / 高分子自由体積 / stopped-flow hyper-CEST / Cellulose Nanofiber / Silk Fibroin / 熱可塑性ポリウレタ ン / 新素材解析 |
Outline of Final Research Achievements |
In order to develop new methodology for the determination of free volume in polymers, our recirculating hyperpolarized 129Xe production system is improved for robustness and sustainability and NMR basic techniques are exploited. Our new methodology, which incorporated hyper-CEST method after the introduction of stopped-flow and subtraction modes, has succeeded in detecting the hidden signal which is impossible to observe because of the low SN ratio in the ordinary hyperpolarized 129Xe NMR spectra. The new methodology has been successfully applied to new biomaterials such as cellulose nanofiber and silk fibroin together with the standard sample of thermoplastic polyurethane. From the analysis of detailed saturation frequency dependence, the chemical shifts of hidden signals are successfully determined to give reasonable values for the size of free volume in cellulose nanofiber and silk fibroin. Application on thermoplastic polyurethane also supported our methodology.
|
Free Research Field |
分析化学
|
Academic Significance and Societal Importance of the Research Achievements |
頑強で持続可能な超偏極キセノン装置の開発により当該装置の脆弱性と煩雑性が解決され、近年急騰する希ガス原料消費量の大幅削減が実現し、超偏極装置の汎用化と普及への基盤が整い、今後、学術的に大きな発展が期待できる。 高分子の自由体積は強度・軽量度・柔軟性・保温性からガス等の透過性・触媒能など幅広い物性や機能に重要である。本研究の成果は、NMRにより簡便に汎用的に自由体積を評価する基礎技術を提案するものであり、今後、高分子の繊維・フイルム・樹脂等はじめ、医療用・ナノテク・エネルギー関連の複合材料等において、新素材開発の強力な基盤技術が構築でき、「もの造り」に関連する学術分野の新発展につながる。
|