2023 Fiscal Year Final Research Report
Development of Functional Materials Exhibiting Mobility Based on Expansion and Contraction of Helical Polymer Chains
Project/Area Number |
21K18997
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 35:Polymers, organic materials, and related fields
|
Research Institution | Kanazawa University |
Principal Investigator |
Maeda Katsuhiro 金沢大学, ナノ生命科学研究所, 教授 (90303669)
|
Co-Investigator(Kenkyū-buntansha) |
廣瀬 大祐 金沢大学, 物質化学系, 助教 (60806686)
西村 達也 金沢大学, 物質化学系, 准教授 (00436528)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Keywords | らせん / ポリアセチレン / 機能性高分子 / リビング重合 / 刺激応答 |
Outline of Final Research Achievements |
We investigated the development of functional materials exhibiting kinetic properties derived from the expansion and contraction of the helical polymer chain using the 'precise synthesis technique of poly(phenylacetylene)s (PPA), which allows functionalization of both ends' recently developed by our group. A concentrated polymer brush consisting of PPA chains that exhibits reversible helical pitch expansion and contraction of the main chain in response to solvent was successfully synthesized on a substrate. The film thickness changed reversibly and significantly in response to the expansion and contraction of the helical pitch, demonstrating its potential to function as a molecular actuator. We also found that PPAs with substituents capable of host-guest interactions introduced at both chain ends can form supramolecular polymers and their morphology significantly changes between linear and cyclic as the rigidity of the main chain changes.
|
Free Research Field |
高分子合成
|
Academic Significance and Societal Importance of the Research Achievements |
人工ラセン高分子は、ラセン構造に基づく情報の増幅・記憶・転写や外部刺激応答性などの機能性に加え、構造面においても高い剛直性・規則性・アスペクト比・官能基超集積構造などの他の分子では見られない特徴を有している。本研究成果は、申請者らが独自に開発した簡便かつ適用範囲の広いラセン高分子の精密合成技術を活用することにより、ラセン高分子鎖からなる高次集積構造体の高度な機能の開拓に繋がる可能性がある。したがって、ナノアーキテクチャー分野にラセン高分子を織り交ぜた新たな研究領域を開拓するといった学術的な興味だけでなく、全く新しい機能を有するキラルマテリアルの効率的な合成法としての応用も期待される。
|