2023 Fiscal Year Final Research Report
Development of Size-Selective Close-Spaced Sublimation Process and its Application to High-Performance Photocathodes for Water Reduction
Project/Area Number |
21K19033
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 36:Inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Konan University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
野瀬 嘉太郎 京都大学, 工学研究科, 准教授 (00375106)
|
Project Period (FY) |
2021-07-09 – 2024-03-31
|
Keywords | 化合物半導体 / 昇華性 / ナノ構造制御 / 半導体光電極 / 光エネルギー変換 |
Outline of Final Research Achievements |
Purposes of this work are demonstration of sublimation point depression phenomenon in the equilibrium between the gas and solid phases and its applications for developing functional materials with controlled nanostructure. Firstly, investigations of the selective filling of tin(II) sulphide as a sublimable compound semiconductor into the ordered pores of a porous alumina membrane were carried out; several experimental results suggest the occurrence of preferential condensation in the pores of the porous alumina membrane. In the course of our research, we also found a method for forming nanosized step structures on the surface of single-crystalline oxide particles; this induced appreciable improvements of photocatalytic activity for overall water splitting. We also studied photoelectrochemical water splitting using ZnTe thin films, which are sublimable semiconductors, and obtained results suggesting hydrogen generation via two-photon absorption through intermediate bands.
|
Free Research Field |
化合物半導体の構造制御とその光電気化学応用
|
Academic Significance and Societal Importance of the Research Achievements |
昇華したSnSの結晶化をナノ細孔中の空間だけで生じさせるには、気相-固相間の毛細管凝縮を生じさせる必要がある。これは、気相-固相平衡を取り扱う原理的課題であり、その実証には熱力学データから算出されるSnSの昇華曲線を参照にしつつ、温度、圧力条件などを最適化する検証実験を要するが、達成されれば、多様な昇華性化合物の高結晶性かつ高純度なナノ構造体を創出する革新的な手法となると考えられる。また、ここで得られたナノ構造制御による光電極および光触媒の高機能化は、いまだ社会実装されていないそれらの系を、実装に近づけるための一つの方向性を示す成果であると考えられる。
|