• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Elucidation of drug-selective trapping air-water interface formation mechanism and development of ultra-rapid drug purification technology

Research Project

  • PDF
Project/Area Number 21K19319
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 47:Pharmaceutical sciences and related fields
Research InstitutionKitami Institute of Technology

Principal Investigator

Saitoh Tohru  北見工業大学, 工学部, 教授 (40186945)

Project Period (FY) 2021-07-09 – 2023-03-31
Keywords気液界面 / 薬物 / 精製 / 濃縮 / 析出 / 高純度化 / 簡便 / 迅速
Outline of Final Research Achievements

Based on the discovery of the selective adsorption phenomenon of drugs on the gas-liquid interface, we have invented a new separation technology (bubble separation) using air bubbles as an adsorbent and examined the possibility as a drug separation and purification technique. A crude product of the antimalarial drug chloroquine after synthesis was purified by this method, and by repeating the bubble separation three times, a high-purity product equivalent to the standard substance could be obtained.
Evaluation of the solvent properties of the air-water interface using a microscopic environmental probe suggested the formation of a suitable field for trapping drugs equivalent to ethyl acetate. Dynamic surface tension measurements confirmed that the product chloroquine was selectively adsorbed on the gas-liquid interface with respect to the raw material. Furthermore, adsorption and aggregation of the drug on the air-liquid interface were reproduced by molecular dynamics simulation.

Free Research Field

分析化学

Academic Significance and Societal Importance of the Research Achievements

気液界面の薬物捕捉媒場としての可能性に着目し、空気を吸着材として用いる薬物分離技術を創案した。気液界面への界面活性剤の吸着は広く知られており、界面がバルクの水と比べて疎水的な性質を持つことは古くから指摘されていた。しかし、気泡を水中物質の吸着材とする考えはこれまでになかった。本研究は、空気が薬物を選択的に捕捉する吸着材となることを見出し、応用の可能性を示した世界で初めての成果である。
薬物の精製には主に晶析やクロマトグラフ分離が用いられており、多量の有機溶媒やエネルギーを必要とする。分離精製により発生する廃棄物や再生も課題であった。本法の実用化により、迅速かつ持続可能なプロセスとなる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi