• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of Real-time Tsunami Risk Evaluation Method Using Machine Learning and Bayesian Updating

Research Project

  • PDF
Project/Area Number 21K20441
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0303:Civil engineering, social systems engineering, safety engineering, disaster prevention engineering, and related fields
Research InstitutionTohoku University

Principal Investigator

Nomura Reika  東北大学, 災害科学国際研究所, 助教 (50900320)

Project Period (FY) 2021-08-30 – 2023-03-31
Keywordsリアルタイム津波リスク評価 / 固有直交分解 / ベイズ更新 / 津波シミュレーション / 最尤シナリオ同定
Outline of Final Research Achievements

Real-time tsunami risk prediction should satisfy both reliability and rapidness for longer evacuation leading times. In this project, we developed a real-time tsunami risk evaluation framework by using three key components: tsunami simulation, proper orthogonal decomposition (POD), and scenario detection based on Bayesian update. By inputting the in situ wave observation data, the proposed method can identify the most probable scenario from a database of numerous tsunami simulation results. According to the detected scenario, tsunami risks, such as maximum wave height and inundation area, can be evaluated within several or tens of minutes after quake occurrences.

Free Research Field

土木工学

Academic Significance and Societal Importance of the Research Achievements

地震の発生をスタートとし,津波の発生・伝播・遡上を,その経時的進行よりもはるかに速く解析するフォワードシミュレーションの発達により,津波到達時刻や沿岸部浸水リスクを実時間の数十倍以上の速さで予想することが可能となっている.一方,フォワードシミュレーションとは別に,そのリスクを観測データから確率論的に議論したり,機械学習技術やデータ同化技術を基に評価したりする研究も進展してきた.本研究は,このような二つの津波リスク評価技術,すなわち,堅牢な力学的洞察を有する数値シミュレーション技術とデータサイエンス技術の利点を活かした先駆的な試みに続くものと位置づけられる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi