• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Predictive modeling of tissue cell and bacterial cell adhesion for the development of antimicrobial biomaterials

Research Project

  • PDF
Project/Area Number 21K20511
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0403:Biomedical engineering and related fields
Research InstitutionTohoku University

Principal Investigator

Umetsu Masaki  東北大学, 環境科学研究科, 助教 (30891387)

Project Period (FY) 2021-08-30 – 2023-03-31
Keywords微生物付着 / 生体材料 / タンパク質吸着 / 細胞接着 / DLVO理論
Outline of Final Research Achievements

This study utilizes XDLVO theory, a model for the aggregation/dispersion of colloidal particles, to systematize microbial attachment to material surfaces in biological environments. In a biological environment, blood components are adsorbed on the surface of materials, and tissue cells and microbial cells adhere to the organic adsorption layer. We predicted the adhesion affinity of Escherichia coli to several biomaterials using XDLVO theory, and found that the predicted results were similar to the results of actual adhesion experiments. In addition, when these biomaterials were immersed in fetal bovine serum, the overall amount of E. coli adherence decreased, but the adherence trend was maintained. Therefore, it is suggested that it may be possible to indirectly predict the adhesion characteristics of microorganisms from the surface properties of materials in the biological environment.

Free Research Field

微生物付着

Academic Significance and Societal Importance of the Research Achievements

本研究では材料表面に形成する有機物吸着層に注目し、これらの吸着層が材料表面性状や微生物付着性に与える影響を評価した。これまで行われてきたXDLVO理論による微生物付着予測の多くは、きれいに洗浄し乾燥した材料の表面性状データを元に計算されていることから、生体環境のような雑多な環境における付着結果と差異が生じる原因となっている可能性が考えられる。また本研究において、微生物培養培地に浸漬した材料でも微生物付着性に変化が見られたことから、微生物の付着性を評価する上で微生物懸濁液に存在する有機物の種類や量についても考慮する必要があることが示された。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi