2022 Fiscal Year Final Research Report
Elucidation of electrical biocorrosion mechanism from the viewpoint of cellular metabolism coupled with extracellular electron uptake
Project/Area Number |
21K20546
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0501:Physical chemistry, functional solid state chemistry, organic chemistry, polymers, organic materials, biomolecular chemistry, and related fields
|
Research Institution | National Institute for Materials Science |
Principal Investigator |
DENG Xiao 国立研究開発法人物質・材料研究機構, 高分子・バイオ材料研究センター, 研究員 (90903740)
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Keywords | 嫌気鉄腐食 / 硫酸還元菌 / 細胞外電子摂取 / 電子受容体 / 酸化還元電位 / エネルギー獲得 / 微生物電気化学 / 細胞外電子摂取 |
Outline of Final Research Achievements |
Corrosion of iron pipelines in anaerobic environments, such as the seabed and underground, causes significant economic losses of hundreds of billions of dollars per year, particularly in industrialized countries with energy industries. Sulfate-reducing bacteria are known to be the main cause of anaerobic iron corrosion, and the electrical interaction between bacterial cells and iron surfaces has been extensively studied. However, there has been little research on the reduction of electron acceptors, which is coupled with the electron withdrawal process.In this study, we investigated how the co-presence of electron acceptors impacts the iron corrosion rate. We found that the co-presence of sulfate with fumarate, DMSO, or nitrate significantly accelerates iron corrosion and sulfate reduction. We applied our findings to develop a new corrosion bacteria detection kit, which has been submitted for patent application.
|
Free Research Field |
微生物鉄腐食
|
Academic Significance and Societal Importance of the Research Achievements |
実環境には豊富な電子受容体が存在するにも関わらず鉄腐食速度への影響は見過ごされてきた。本研究は、第二の電子受容体が硫酸塩と共存すると嫌気鉄腐食が加速されることを明らかにした。この知見は、短時間で腐食を探知する技術への応用も見込み、本研究の内容は腐食菌検出キットとして特許化している。さらに、実環境での速い鉄腐食に対する理解を深め、今後の防食技術の発展に貢献するものと期待される。また、本研究は硫酸還元菌による代謝についてエネルギー論的側面から分析することで、電子摂取と共役する電子のエネルギーを昇圧する機構も提案しており、貧栄養環境中における菌体の生存戦略への理解を深めている。
|