2022 Fiscal Year Final Research Report
Study of backward electron transfer process in dye-sensitized photocatalyst system using oxide nanosheet semiconductor
Project/Area Number |
21K20555
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0502:Inorganic/coordination chemistry, analytical chemistry, inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Keywords | 色素増感 / ナノシート / 過渡吸収測定 / キャリアダイナミクス / 水分解 |
Outline of Final Research Achievements |
Using dye-sensitized photocatalysts, I focused on the effects of surface modifications, which are essential for photocatalytic reactions, and investigated them from the viewpoint of photoexcited carrier dynamics, and obtained the following results. 1) Elucidation of the effect of surface defects on the back electron transfer of photoexcited carriers, 2) Control of reactivity with the reaction substrate by surface modification, 3) Elucidation of the effect of Pt particle size on photoexcited carrier dynamics, and 4) Establishment of a method for evaluating the electron injection, quenching, and back electron transfer by the type of reducing agent. Based on the above results, by selecting appropriate dye-sensitized photocatalysts and optimizing surface modification, we have achieved water splitting activity 100 times higher than that of photocatalysts without surface modification, and solar energy conversion efficiency comparable to photosynthesis in green plants.
|
Free Research Field |
エネルギー関連化学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、Zスキーム型の水分解システムで水分解効率を支配する逆反応の進行を表面修飾によって制御し、エネルギー変換効率の大幅な向上に成功した。この成果により、水分解反応には不適と考えられていた色素増感型光触媒に再び注目を集めることとなった。 開発した水分解反応システムは、多くの材料群で観測されている「強度の弱い光のもとでの効率低下」が起こらないこともわかった。本研究で見出した表面修飾方法は、産業界でも研究開発が行われている色素増感型太陽電池へ応用することにより、エネルギー変換効率向上に貢献することも期待できる。
|