• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Web-based screening of neurological diseases using pose estimator

Research Project

  • PDF
Project/Area Number 21K20891
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0902:General internal medicine and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Sato Kenichiro  東京大学, 大学院医学系研究科(医学部), 助教 (10908495)

Project Period (FY) 2021-08-30 – 2023-03-31
Keywords歩行解析 / 自動解析 / 姿勢推定 / 深層学習 / 時計描画テスト / 認知機能低下 / スクリーニング / AI
Outline of Final Research Achievements

We aimed to detect neurodegenerative diseases including Alzheimer's disease (AD) or Parkinson's disease (PD) by web-based applications available in smartphones, by attempting to develope two different methods: one is applying pose-estimating to 2D video movies recording gait, and another is deep learning-based prediction of cognitive decline from Clock-Drawing Test pictures. We started to take data of gait movies from preclinical AD participants. We also built deep learning prediction models to identify those with probable dementia or with executive dysfunction.

Free Research Field

Neurology

Academic Significance and Societal Importance of the Research Achievements

本研究の発展により、web上(含スマートフォン)での早期検出を目的としたアプリケーションを用意することができ、より幅広い人に利用してもらうことが可能になるため、従って神経疾患の早期発見がより多くの人で可能になるのではないかと期待できる。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi