2023 Fiscal Year Final Research Report
Development of methods for automated preprocedural CT assessment for TAVR by artificial intelligence
Project/Area Number |
21K20920
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0903:Organ-based internal medicine and related fields
|
Research Institution | Jikei University School of Medicine |
Principal Investigator |
|
Project Period (FY) |
2021-08-30 – 2023-03-31
|
Keywords | AI / TAVI / TAVR / CT / landmark detection / 3D / segmentation |
Outline of Final Research Achievements |
This study aimed to establish a foundation for the application of artificial intelligence (AI) to three-dimensional imaging modalities by applying AI to cardiac CT analysis for preoperative evaluation of Transcatheter Aortic Valve Implantation (TAVI). During development, the step of accurately estimating planes from three-dimensional data was highly valuable due to its broad applicability but also posed significant challenges. By developing an algorithm based on the optimal transport distance, we achieved high-precision plane estimation. This method allows for the localization of landmarks with accuracy comparable to CT image analysis experts, even from low-resolution CT images, while yielding higher accuracy compared to existing AI technologies. A manuscript on these findings for publication has being prepared.
|
Free Research Field |
Cardiology
|
Academic Significance and Societal Importance of the Research Achievements |
2次元画像に比べて3次元画像のAI開発は難しいとされるが、本研究は同分野に進展をもたらした。本研究で提唱したUNET-GliPにより、ヒートマップ回帰における学習の安定性と予測精度のトレードオフを緩和し、粗い解像度の1.6mm立方ボクセルのCT画像からランドマークを高精度で検出することに成功した。この技術は、TAVI術前CT解析にとどまらず、僧帽弁逆流症などの他の構造的心疾患の診断、手術プランニング、さらにMRIや心臓超音波検査などの異なる3次元画像モダリティへの応用基盤としての可能性を秘めており、診断精度向上、診療負担軽減、医用画像解析研究の発展に貢献することが期待される。
|