• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Estimation of density distribution of inhomogeneous scattering media with deep learning and physics-based model

Research Project

  • PDF
Project/Area Number 21K21317
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 1002:Human informatics, applied informatics and related fields
Research InstitutionNara Institute of Science and Technology

Principal Investigator

Fujimura Yuki  奈良先端科学技術大学院大学, 先端科学技術研究科, 助教 (40908729)

Project Period (FY) 2021-08-30 – 2023-03-31
Keywordsコンピュータビジョン / 散乱媒体 / 深層学習 / フォトンマッピング
Outline of Final Research Achievements

This research aims to estimate the density distribution of inhomogeneous participating media with deep learning and a physics-based model. In participating media such as fog or smoke, incident light is scattered by suspended particles, which causes scattered light. In this research, we developed the method to estimate the density distribution of participating media only with commonly-used RGB cameras by exploiting deep-learning technology. The input of the developed method is multiple images captured from different views. A density volume is modeled as the output of a convolutional neural network, and the volume is optimized by reconstructing observed images with photon mapping, which is one of physics-based renderers.

Free Research Field

コンピュータビジョン

Academic Significance and Societal Importance of the Research Achievements

本研究では深層学習技術とフォトンマッピングを用いて散乱媒体濃度分布の推定を行った.CGでの画像生成に用いられるフォトンマッピングを最適化に用いるためには,画像を生成するすべての過程を微分可能な形で実装する必要がある.本研究は世界で初めてフォトンマッピングを微分可能な形で実装した.実世界の散乱媒体の濃度分布を推定することは,物理モデルの解析や写実的なCGの生成など社会的にも重要である.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi