• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Geometry of curves, surfaces and hypersurfaces with singularities

Research Project

  • PDF
Project/Area Number 22244006
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionTokyo Institute of Technology (2011-2013)
Osaka University (2010)

Principal Investigator

UMEHARA Masaaki  東京工業大学, 情報理工学(系)研究科, 教授 (90193945)

Co-Investigator(Kenkyū-buntansha) YAMADA Kotaro  東京工業大学, 大学院理工学研究科, 教授 (10221657)
OHNITA Yoshihiro  大阪市立大学, 大学院理学研究科, 教授 (90183764)
MASHIMO Katsuya  法政大学, 理工学部, 教授 (50157187)
HASHIMOTO Hideya  名城大学, 理工学部, 教授 (60218419)
ROSSMAN Wayne  神戸大学, 大学院理学研究科, 教授 (50284485)
Co-Investigator(Renkei-kenkyūsha) KOISO Norihito  大阪大学, 大学院理学研究科, 教授 (70116028)
GOTO Ryushi  大阪大学, 大学院理学研究科, 准教授 (30252571)
KOKUBU Masatoshi  東京電機大学, 工学部, 教授 (50287439)
FUJIMORI Syoichi  岡山大学, 理学部, 准教授 (00452706)
SAJI Kentaro  神戸大学, 大学院理学研究科, 准教授 (70451432)
MIYAOKA Reiko  東北大学, 大学院理学研究科, 教授 (70108182)
IZUMIYA Shyuichi  北海道大学, 大学院理学研究科, 教授 (80127422)
ISHIKAWA Goo  北海道大学, 大学院理学研究科, 教授 (50176161)
KAWAKAMI Yu  金沢大学, 理工研究域数物科学系, 准教授 (60532356)
AGAOKA Yoshio  広島大学, 大学院理学研究科, 教授 (50192894)
KITAGAWA Yoshihisa  宇都宮大学, 教育学部, 教授 (20144917)
MABUCHI Toshiki  大阪大学, 大学院理学研究科, 教授 (80116102)
Project Period (FY) 2010-04-01 – 2015-03-31
Keywords特異点 / ガウス曲率 / 微分幾何学 / 半正定値計量 / 曲面 / 曲線 / 超曲面
Outline of Final Research Achievements

Using the concept of coherent tangent bundles, we (the head investigator and the research group) found four new Gauss-Bonnet type formulas for closed surfaces with singularities in Euclidean 3-space. Using the fact that a spacelike maximal surface with fold singularities has an analytic extension across those singularities, we showed that the analytic extensions of the triply-periodic Schwarz D type maximal surfaces are all embedded. In a joint work with Yoshihisa Kitagawa, we proved that the Clifford torus is rigid in the class of immersed flat tori whose mean curvature functions do not change sign. Moreover, we obtained some interesting results for plane curves. For example, a simplification of the proof of Bol's conjecture on sextactic points was discovered.

Free Research Field

微分幾何学

URL: 

Published: 2016-06-03   Modified: 2021-04-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi