• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Stochastic analysis on large scale interacting systems and its applications

Research Project

  • PDF
Project/Area Number 22244007
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionThe University of Tokyo

Principal Investigator

FUNAKI Tadahisa  東京大学, 大学院数理科学研究科, 教授 (60112174)

Co-Investigator(Kenkyū-buntansha) OSADA Hirofumi  九州大学, 大学院数理学研究院, 教授 (20177207)
MATANO Hiroshi  東京大学, 大学院数理科学研究科, 教授 (40126165)
HIGUCHI Yasunari  神戸大学, 理学部, 教授 (60112075)
OTOBE Yoshiki  信州大学, 理学部, 准教授 (30334882)
Co-Investigator(Renkei-kenkyūsha) TANEMURA Hideki  千葉大学, 理学部, 教授 (40217162)
CHIYONOBU Taizo  関西学院大学, 理工学部, 教授 (50197638)
KUMAGAI Takashi  京都大学, 大学院理学研究科, 教授 (90234509)
HANDA Kenji  佐賀大学, 理工学部, 教授 (10238214)
YOSHIDA Nobuo  名古屋大学, 大学院多元数理科学研究科, 教授 (40240303)
SUGIURA Makoto  琉球大学, 理学部, 准教授 (70252228)
ICHIHARA Naoyuki  青山学院大学, 理工学部, 准教授 (70452563)
NISHIKAWA Takao  日本大学, 理工学部, 准教授 (10386005)
SAKAGAWA Hironobu  慶應義塾大学, 理工学部, 准教授 (60348810)
XIE Bin  信州大学, 理学部, 准教授 (50510038)
Project Period (FY) 2010-04-01 – 2015-03-31
Keywords確率論 / 解析学 / 統計力学 / 数理物理 / 関数方程式論 / 応用数学
Outline of Final Research Achievements

We studied invariant measures of KPZ equation which describes a growth of interfaces with fluctuations. This stochastic partial differential equation involves a diverging term which makes difficult to give a mathematical meaning to it. We discussed the non-equilibrium fluctuation problem for the dynamics of two-dimensional Young diagrams and derived a stochastic partial differential equation under a scaling limit. The method of the hydrodynamic limit is applied to a system of creatures with an effect of self-organized aggregation and established a link between macroscopic and microscopic descriptions. We proved unique existence of strong solutions of infinite dimensional stochastic differential equations and rigidity for Airy point process and Ginibre point process, which appear in the theory of dynamic random matrices. Furthermore, we studied percolations, nonlinear diffusion equations, stochastic partial differential equations with stable noises and others.

Free Research Field

確率論

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi