2014 Fiscal Year Final Research Report
Geometry of twistor spaces
Project/Area Number |
22340012
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Osaka University |
Principal Investigator |
FUJIKI Akira 大阪大学, その他部局等, 名誉教授 (80027383)
|
Co-Investigator(Kenkyū-buntansha) |
ENOKI Ichiro 大阪大学, 理学研究科, 准教授 (20146806)
USUI Sampei 大阪大学, 理学研究科, 教授 (90117002)
OGUISO Keiji 大阪大学, 理学研究科, 教授 (40224133)
GOTO Ryushi 大阪大学, 理学研究科, 教授 (30252571)
|
Project Period (FY) |
2010-04-01 – 2015-03-31
|
Keywords | ツイスター空間 / 反自己双対多様体 / 双エルミート構造 / 非ケーラー曲面 |
Outline of Final Research Achievements |
In 2010 the author and M. Pontecorvo have constructed real-analytic family of anti-self-dual bi-hermitian structures for any hyperbolic Inoue surfaces, for instance. The construction, however, is done via the construction of the associated twistor spaces, and therefore the geometry implication of the parameters as deformation of anti-self-dual hermitian structures.In this investigation, based on the notions of Lee bundle L and the associated L-Kahler classes we have found a new framework for discussing the situation, and at least in the neighborhood of the boundary of the moduli space this framework actually works effectively.
|
Free Research Field |
複素幾何学
|