• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Geometric structure and combinatorial structure of 3-dimensional manifolds

Research Project

  • PDF
Project/Area Number 22340013
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHiroshima University

Principal Investigator

SAKUMA MAKOTO  広島大学, 理学(系)研究科(研究院), 教授 (30178602)

Co-Investigator(Kenkyū-buntansha) SHIMADA Ichiro  広島大学, 大学院理学研究科, 教授 (10235616)
DOI Hideo  広島大学, 大学院理学研究科, 講師 (72542810)
YASUI Koichi  広島大学, 大学院理学研究科, 助教 (70547009)
HIRANOUCHI Toshiro  広島大学, 大学院理学研究科, 助教 (59321203)
KAMADA Seiichi  大阪市立大学, 大学院理学研究科, 教授 (60254380)
KONO Masaharu  北見工業大学, 工学部, 教授 (40170203)
NIKKUNI Ryo  東京女子大学, 現代教養部, 准教授 (00401878)
Co-Investigator(Renkei-kenkyūsha) AKIYOSHI Hirotaka  大阪市立大学, 大学院, 准教授 (80397611)
HIRASAWA Mikami  名古屋工業大学, 工学研究科, 准教授 (00337908)
OHSHIKA Ken'ICHI  大阪大学, 大学院理学研究科, 教授 (70183225)
WADA Masaaki  大阪大学, 大学院理学研究科, 教授 (80192821)
MIYACHI Hideki  大阪大学, 大学院理学研究科, 教授 (40385480)
KIN Eiko  大阪大学, 大学院理学研究科, 准教授 (80378554)
KOBAYASHI Tsuyoshi  奈良女子大学, 理学部, 教授 (00186751)
YAMASHITA Yasushi  奈良女子大学, 理学部, 教授 (70239987)
MORIMOTO Kanji  甲南大学, 理学部, 教授 (90200443)
NAKANISHI Toshihiro  島根大学, 総合理工学部, 教授 (00172354)
KOMORI Yohei  大阪市立大学, 大学院理学研究科, 准教授 (70264794)
SUGAWA Toshiyuki  東北大学, 情報科学研究科, 教授 (30235858)
SHACKLETON Kenneth  東京大学, 数物連携宇宙研究機構, 特任研究員 (70536870)
Project Period (FY) 2010-04-01 – 2015-03-31
Keywords2-bridge knot / 2-bridge link / bridge decomposition / Heegaard splitting / McShane's identity / cusp shape
Outline of Final Research Achievements

(1) Joint work with Donghi Lee: We established a variation of McShane’s identity for 2-bridge links. Moreover, we introduced the Heckoid orbifolds and proved that they are hyperbolic, and gave a systematic construction of epimorphisms from 2-bridge link groups onto Heckoid groups. Furthermore, we proved that these are the only upper-meridian pair preserving epimorphisms onto even Heckoid groups.
(2) Joint work with Ken’ichi Ohshika: We proved that for a Heegarrd surface S of a 3-manifold M with high Hempel distance, a certain natural mapping class group associated with S has a natural free decomposition. We also proved that if S is of bounded combinatorics then there is a nonempty open set U of the projective measured lamination space of S, such that any simple loop in U is not null-homntopic in M and that any two distinct simple loops in U are not homotopic in M.

Free Research Field

低次元トポロジー

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi