• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2010 Fiscal Year Annual Research Report

混合楕円モチーフの研究

Research Project

Project/Area Number 22540008
Research InstitutionUniversity of Tsukuba

Principal Investigator

木村 健一郎  筑波大学, 数理物質系, 講師 (50292496)

Keywordsモチーフ
Research Abstract

今年度は混合楕円モチーフというモチーフの部分圏の有力な候補を構成した。
DeligneとBeilinsonが存在を予想した混合モチーフの圏は、淡中圏、つまりある代数群の表現の圏であると予想されている。花村昌樹、Levine,Voevodskyは、混合モチーフの圏の導来圏であるべき三角圏を構成した。代数的K群に関するBeilinson-Souleの予想を仮定すれば、この三角圏にt構造が入り、混合モチーフの圏はその核となる。それは自然に淡中圏になる。
一方モチーフに対応する代数群をより具体的に構成しようという試みがある。BlochとKrizは、混合Tateモチーフという部分圏に対応する代数群を、代数的サイクルを使って具体的に構成した。寺杣友秀氏と共同で、これを混合楕円モチーフ、つまりある楕円曲線で生成される混合モチーフの圏の場合に拡張した。しかしBlochとKrizの構成を単純に一般化したわけではなく、多様体上のlocal systemの圏に対応する淡中群の構成にヒントを得て、モチーフの場合に構成し直したと言えるものである。技術的ないくつかの困難はあったが克服された。楕円ポリログはこの圏のnon trivialな対象となっている。さらにこの圏のHodge実現関手の構成に取り組んでいる。まず前段階として、Bloch-Krizの混合Tateモチーフの圏のHodge実現を具体的に構成しなおしている。これは花村昌樹氏、寺杣氏との共同研究で、現在詰めの段階である。Hodge実現関手は、位相チェイン上の周期積分を使って表される。適切なチェインの存在の証明に取り組んでいる。

  • Research Products

    (2 results)

All 2010

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results)

  • [Journal Article] A Remark on the Second Abel-Jacobi map2010

    • Author(s)
      K.Kimura
    • Journal Title

      Cycles, Motives and Shimura varieties

      Volume: 1 Pages: 217-226

    • Peer Reviewed
  • [Presentation] Mixed Elliptic Motives2010

    • Author(s)
      K.Kimura
    • Organizer
      NUMBER THEORY, GEOMETRY AND PHYSICS AT THE CROSSROADS
    • Place of Presentation
      津田塾大学(小平市)(招待講演)
    • Year and Date
      2010-08-08

URL: 

Published: 2013-06-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi