2011 Fiscal Year Annual Research Report
医師の診療アルゴリズムを明確にした医療情報の抽出およびデータベース化
Project/Area Number |
22590449
|
Research Institution | Tohoku University |
Principal Investigator |
中山 雅晴 東北大学, 病院, 講師 (40375085)
|
Keywords | 医療情報 / データベース / アルゴリズム |
Research Abstract |
本研究は、個々の医療行為を医師の診療アルゴリズムまで含めた記述法の確立とそのデータベース化を目指している。初年度は当院循環器内科入院患者のデータ、今年度は東北大学病院全体の患者データを収集し、採血、処方、生理検査、治療歴など多岐に渡ってデータベース化した。、さらには「ある患者情報をもとに医師が下した判断とその行為」まで粒度を細かくしたデータをとるために詳細な検索機能の設定と、そのパフォーマンス向上を主眼にシステムを開発した。 <データ収集> 当院診療支援システムデータベースから入院患者データを収集、MySQLで作成したデータベースに蓄積した。JAVA言語とApacheで構築したシステムを補完することによりweb browserで検索できるデータウェアハウスを構築した。このデータベースシステムにより、stand aloneのPCにおいて様々な切り口による患者情報の収集が容易に行うことができた。実例として、Settle Heart Failure Modelなど代表的な心疾患に対するリスクコアをすべての患者で算出し、推測予後と実際の死亡率からリスクモデルの妥当性を比較・検証する研究を行った。その成果は2010年American Heart Associationに学会発表し、2011年 American Journal of Cardiologyに論文として報告し、その他3件の国際学会で発表を行った。 <検索パフォーマンス向上> しかしながら、上記のシステムでは、検査値や薬剤情報の複数検索などデータ総数の多いもの同士の解析には時間がかかるため、Amazon Web Serviceによるクラウド環境を利用することによりパフォーマンス向上を検討した。また次世代型データベースNoSQLの1つであるMongoDBを用いても同様に検索を検討した。
|
Current Status of Research Progress |
Current Status of Research Progress
3: Progress in research has been slightly delayed.
Reason
全科データは予想以上の容量を必要とし、データベース処理のパフォーマンスが不十分であった。クラウドを試したり、チューニングをするなどして解決のための環境構築に手間取った。
|
Strategy for Future Research Activity |
論文化できるよう研究をまとめていく。また、独自部分と現在使用されている他のフォーマットとのすり合わせ作業を地道に行っていく。
|