2011 Fiscal Year Final Research Report
p-adic Sato theory and arithmetic geometry
Project/Area Number |
22654001
|
Research Category |
Grant-in-Aid for Challenging Exploratory Research
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Tohoku University |
Principal Investigator |
YAMAZAKI Takao 東北大学, 大学院・理学研究科, 准教授 (00312794)
|
Co-Investigator(Kenkyū-buntansha) |
KOBAYASHI Shinichi 東北大学, 大学院・理学研究科, 准教授 (80362226)
|
Co-Investigator(Renkei-kenkyūsha) |
IKEDA Takeshi 岡山理科大学, 理学部, 准教授 (40309539)
YAMAZAKI Rei (YAMAZAKI INOUE Rei) 千葉大学, 理学部, 准教授 (30431901)
KONDO Satoshi 東京大学, 数物連携宇宙研究機構, 特任助教 (30372577)
|
Project Period (FY) |
2010 – 2011
|
Keywords | 数論幾何学 / 数理物理学 / タウ関数 / 佐藤理論 / ヤコビ多様体 |
Research Abstract |
In order to clarify the integrable structure of non-linear PDEs such as KdV and KP equations, Mikio Sato introduced the tau function. Anderson introduced its p-adic analogue and applied it to arithmetic problem : a torsion point of"prime order" on the theta divisor of a Jacobian variety seldom exists. We extended this result to"prime power order". In the course of proving this result, we established many fundamental results on p-adic Sato theory, which are expected to be useful for other future research as well.
|
Research Products
(16 results)