• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

Effective Population and Training Data Partitioning in Parallel Distributed Evolutionary Knowledge Acquisition

Research Project

  • PDF
Project/Area Number 22700239
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Sensitivity informatics/Soft computing
Research InstitutionOsaka Prefecture University

Principal Investigator

NOJIMA Yusuke  大阪府立大学, 大学院・工学研究科, 助教 (10382235)

Project Period (FY) 2010 – 2012
Keywords遺伝的アルゴリズム
Research Abstract

Evolutionary knowledge acquisition has beenproposed in order to obtain rule-based knowledge from numerical data. The main problem of this method is that huge computation cost is necessarywhen we apply it to large data. This study proposes parallel distributed implementation of evolutionary knowledge acquisition where both a population and training data are divided into subpopulations and training data subsets, respectively. The computational experiments show that the computational cost can be drastically reduced without the deterioration of the generalization ability. The effects of various specifications for parallel distributed implementation are also examined.

  • Research Products

    (13 results)

All 2013 2012 2011 2010 Other

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (11 results) Remarks (1 results)

  • [Journal Article] Parallel distributed hybrid fuzzy GBML models with rule set migration and training data rotation2013

    • Author(s)
      H. Ishibuchi, S. Mihara, and Y. Nojima
    • Journal Title

      IEEE Transactions on Fuzzy Systems

      Volume: 21 Pages: 355-368

    • Peer Reviewed
  • [Presentation] Ensemble fuzzy rule-based classifier design by parallel distributed fuzzy GBML algorithms2012

    • Author(s)
      H. Ishibuchi, M. Yamane, and Y. Nojima
    • Organizer
      Proc. of 9th International Conference on Simulated Evolution and Learning - SEAL 2012
    • Place of Presentation
      Hanoi, Vietnam
    • Year and Date
      2012-12-19
  • [Presentation] 並列分散型ファジィ遺伝的機械学習によるアンサンブル識別器の設計2012

    • Author(s)
      山根優和,能島裕介,石渕久生
    • Organizer
      第28回ファジィシステムシンポジウム
    • Place of Presentation
      名古屋
    • Year and Date
      2012-09-14
  • [Presentation] Application of parallel distributed genetics-based machine learning toimbalanced data sets2012

    • Author(s)
      Y. Nojima, S. Mihara, and H. Ishibuchi
    • Organizer
      Proc. of 2012 IEEE International Conference on Fuzzy Systems
    • Place of Presentation
      Brisbane, Australia
    • Year and Date
      2012-06-15
  • [Presentation] Training data subdivision and periodical rotation in hybrid fuzzy genetics-based machine learning2011

    • Author(s)
      H. Ishibuchi, S. Mihara, and Y. Nojima
    • Organizer
      Proc. of 10th International Conference on Machine Learning and Applications
    • Place of Presentation
      Honolulu, Hawaii, USA
    • Year and Date
      2011-12-21
  • [Presentation] 並列分散型遺伝的機械学習における環境の変化が及ぼす汎化性能への影響2011

    • Author(s)
      三原新吾,能島裕介,石渕久生
    • Place of Presentation
      宮城
    • Year and Date
      2011-12-18
  • [Presentation] Parallel distributed genetic rule selection of association rules2011

    • Author(s)
      Y. Nojima, S. Mihara, and H. Ishibuchi
    • Organizer
      Abstract Booklet of International Workshop on Simulation and Modeling related to Computational Science and Robotics Technology
    • Place of Presentation
      Kobe, Japan
    • Year and Date
      2011-11-03
  • [Presentation] Relation between migration interval and data rotation interval in parallel distributed fuzzy GBML2011

    • Author(s)
      S. Mihara. Y. Nojima, and H. Ishibuchi
    • Organizer
      Proc. of 12th International Symposium on Advanced Intelligent Systems
    • Place of Presentation
      Suwon, Korea
    • Year and Date
      2011-10-01
  • [Presentation] 並列分散型ファジィ遺伝的機械学習の探索性能に対する個体移住操作の影響2011

    • Author(s)
      三原新吾,能島裕介,石渕久生
    • Organizer
      第21回インテリジェント・システム・シンポジウム講演論文集
    • Place of Presentation
      神戸
    • Year and Date
      2011-09-14
  • [Presentation] Parallel distributed implementation of genetics-based machine learning for fuzzy classifier design2010

    • Author(s)
      Y. Nojima, S. Mihara, and H. Ishibuchi
    • Organizer
      Lecture Notes in Computer Science 6457: Simulated Evolution and Learning (8th International Conference on Simulated Evolution and Learning)
    • Place of Presentation
      Springer, Berlin
    • Year and Date
      2010-12-04
  • [Presentation] Rotation effect of training data subsets in parallel distributed fuzzy genetics-based machine learning2010

    • Author(s)
      Y. Nojima, S. Mihara, and H. Ishibuchi
    • Organizer
      Proc. of 14th Asia Pacific Symposium on Intelligent and Evolutionary Systems
    • Place of Presentation
      Miyajima, Japan
    • Year and Date
      2010-11-20
  • [Presentation] Ensemble classifier design by parallel distributed implementation of genetic fuzzy rule selection for large data sets2010

    • Author(s)
      Y. Nojima, S. Mihara, and H. Ishibuchi
    • Organizer
      Proc. of 2010 IEEE Congress on Evolutionary Computation
    • Place of Presentation
      Barcelona, Spain
    • Year and Date
      2010-07-23
  • [Remarks]

    • URL

      http://www.cs.osakafu-u.ac.jp/~nojima/

URL: 

Published: 2014-08-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi