• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2011 Fiscal Year Annual Research Report

有限群のブロックの加群の圏及びその導来圏の同値について

Research Project

Project/Area Number 22740025
Research InstitutionTokyo University of Science

Principal Investigator

功刀 直子  東京理科大学, 理学部, 講師 (50362306)

Keywords有限群 / モジュラー表現 / ブロック / 森田同値 / 導来同値 / 安定同値
Research Abstract

有限群のモジュラー表現における重要な問題のひとつに,与えられた群の可換不足群をもつブロックとそれにブラウアー対応するp-局所部分群のブロックは導来同値だろうと予想したブルエによる可換不足群予想がある。可換不足群予想の解決のためには非可換不足群をもつブロックについての考察も重要であると考えられている。また,有限体上の一般線型群などの無限系列の群についての可換不足群予想は,与えられた有限p-群を不足群にもつブロックの森田同値類は有限個だろうと予想したドノバン予想とも関係し重要である。本研究では,これらのことを踏まえて,非可換不足群をもつ一般線型群のブロックの森田同値類分類を行うことを目的の一つとしているが,その準備として本年度は,巡回シロー部分群をもつ群を拡大して得られる非可換シロー部分群をもつ群の主ブロックに関する考察を行った。とくに,指標に関するブルエ予想が成立している例として,ある条件のもとでの有限体上の3次特殊線形群をあげ,より強く導来同値が成立するかどうかの検証に向けて,この群の主ブロックにおける単純加群のGreen対応子について考察した。非可換シロー部分群をもつ場合,射影加群の構造がより複雑になるためGreen対応のLoewy列を求めることは可換シロー部分群をもつ場合と比べると難しいことが多い。そのため,自明なソースをもつ加群を用いてGreen対応を特徴づけることを行い,無限系列として現れるこれらの群の主ブロックの単純加群のGreen対応子がすべて同じ特徴づけで得られることを確認した。このことは,これらの主ブロックが森田同値になることの検証に向けての重要な結果であると考えられる。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

「研究の目的」に記載したように,無限系列の主ブロックの森田同値の方法や導来同値分類の方法の開発に関わるような実例の検証を行えたため,おおむね順調に進展していると考えられる。

Strategy for Future Research Activity

今後の研究についても,非可換不足群をもつ主ブロックの具体的な例で局所部分群の主ブロックとの導来同値を検証し,また無限系列の群の主ブロックでの森田同値分類に関しても,具体例での検証から一般論を構築するという方法をとっていく。

  • Research Products

    (2 results)

All 2011

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results)

  • [Journal Article] On saturated fusion systems and Brauer indecomposability of Scott modules2011

    • Author(s)
      R.Kessar, N.Kunugi, N.Mitsuhashi
    • Journal Title

      Journal of Algebra

      Volume: 340 Pages: 90-103

    • Peer Reviewed
  • [Presentation] Fusion systemとスコット加群のBrauer直既約性2011

    • Author(s)
      功刀直子
    • Organizer
      RIMS研究集会「有限群のコホモロジー論とその周辺」
    • Place of Presentation
      京都大学数理解析研究所
    • Year and Date
      2011-08-29

URL: 

Published: 2013-06-26  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi