• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Annual Research Report

非ケーラー構造によるコンパクト等質複素多様体に関する研究

Research Project

Project/Area Number 22740040
Research InstitutionShimane University

Principal Investigator

山田 拓身  島根大学, 総合理工学研究科(研究院), 准教授 (40403117)

Project Period (FY) 2010-04-01 – 2013-03-31
Keywords擬ケーラー多様体 / 等質空間 / リ―群 / リー環 / 可解多様体 / 旗多様体
Research Abstract

研究目的は非ケーラー構造の存在、非存在という観点からコンパクト等質複素多様体の複素幾何的構造と位相構造を調べることであり、計画としてはコホモロジー群の計算結果を利用し、非ケーラー構造をもつ多様体の位相的構造を求めることであった。非ケーラー構造として、擬ケーラー構造を主に考察した。研究実績として、コンパクト等質複素多様体で第1チャーン類がゼロになるものが擬ケーラー構造をもつならば、コンパクト複素平行化可能な可解多様体になることを示した。またコンパクト等質複素多様体は旗多様体上のファイバーが複素平行化可能多様体となるファイバー束の構造を持つ事が知られている。したがって旗多様体、あるいは複素平行化可能多様体上の非ケーラー構造を調べることが重要となる。さらに旗多様体不変なケーラーアインシュタイン計量を持つ事が知られており、ではケーラーでない不変アインシュタイン計量がどの程度あるか、という問題は古くから研究されている。では同様な問題として、旗多様体にはケーラーでない擬ケーラー計量の指数としてどのようなものを持つかが問題となる。これについて研究をおこない、研究実績として、ルート系やTルート系、および鏡映変換、ワイル群を用いて指数をほぼ決定した。その際、さらに旗多様体はコホモロジー群がTルート系などで詳しく調べられている事を用いた。複素構造を固定したときに、どのような擬ケーラー構造の指数がでてくるかを調べることで旗多様体に異なる不変複素構造がどの程度あるかと関わりがあることを示した。

Current Status of Research Progress
Reason

24年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

24年度が最終年度であるため、記入しない。

  • Research Products

    (2 results)

All 2013 2012

All Presentation (2 results) (of which Invited: 2 results)

  • [Presentation] 一般化された旗多様体の不変擬ケーラー構造の指数について2013

    • Author(s)
      山田拓身
    • Organizer
      多様体と幾何構造の融合
    • Place of Presentation
      名城大学(名古屋市)
    • Year and Date
      20130304-20130306
    • Invited
  • [Presentation] 非ケーラー構造をもつ複素等質空間の正則ベクトル場について2012

    • Author(s)
      山田拓身
    • Organizer
      複素解析的ベクトル場・葉層構造とその周辺
    • Place of Presentation
      龍谷大学セミナーハウスともいき荘(京都市)
    • Year and Date
      20121207-20121209
    • Invited

URL: 

Published: 2014-07-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi