2022 Fiscal Year Research-status Report
周期と安定性条件の対応によるホモロジー的ミラー対称性の精密な理解
Project/Area Number |
22K03294
|
Research Institution | Josai University |
Principal Investigator |
池田 暁志 城西大学, 理学部, 准教授 (40755162)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Keywords | ミラー対称性 / ルート系 / gentle代数 / フロべニウス多様体 / 安定性条件 |
Outline of Annual Research Achievements |
今年度は、ホモロジー的ミラー対称性のB模型側に現れる三角圏の安定性条件の空間と対応すると思われるフロべニウス構造についての基本的な研究を実施した。A模型側で境界付き実曲面に対する深谷圏を考えた時、それに対応する非可換代数はgentle代数と呼ばれるクラスになることが、Haiden-Katzarkov-Kontsevichにより示されおり、近年、このミラー対称性による対応を通して、曲面の幾何学とgentle代数上の加群の導来圏の関係性の研究は活発に研究が行われている。 今年度は、このgentle代数の加群の導来圏の安定性条件の空間を考えた時、この上に構成されることが期待されるフロべニウス多様体の構造を、曲面から自然に現れる拡張ルート系に付随した不変式論を用いて構成することを目標として、共同研究を大阪大学の高橋氏、白石氏、大谷氏と共同で実施した。この不変式に付随したフロべニウス多様体の平坦計量の計算は、実験をするための一番非自明で簡単な例の計算がすでにステップ数が多く、各ステップごとの計算量も多いので手計算では厳しいものである。そこで、今年度は 科研費で高性能のPCを購入し、Pythonで全計算ステップを自動で処理するプログラムを組み、そのプログラムを用いて具体例を計算したところ、拡張ルート系からフロべニウス多様体の平坦計量が現れる様子が観察できたので、この結果を元に、現在一般論の証明を進めている段階である。また、affine cusp polynomialに関連するクラスに関しては、研究のヒントとなる論文が見つかったので、それを元に、最近、大阪大学の大谷氏と清華大学のQiu Yu氏と共に議論をスタートさせたところである。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
当初考えていた研究予定のうち、曲面に関連するクラスのミラー対称性や安定性条件に関しては、研究が進んでいるから。また、affine cusp polynomialに関連するクラスの安定性条件に関しても、ある程度方針が見えていて、現在研究プロジェクトが動き始めているから。
|
Strategy for Future Research Activity |
今年度、計算によって不変式や平坦計量の存在が確信でき、ほぼ方針が立った曲面から現れるルート系に付随したルート系の不変式とそこから現れるフロべニウス構造に関する研究は、来年度中に理論的な証明を与え、論文としてまとめようと考えている。また、affine cusp polynomialに関するクラスに関しては、大阪大学の大谷氏と清華大学のQiu Yu氏と共に共同でスタートした研究をこのまま継続して進めていく予定である。
|
Causes of Carryover |
今年度は、物品費により購入したPCにより、研究のために必要なプログラムを組むことに注力していたため、予定していた自身が出張を行うことがなかったので次年度への残額が生じた。
|