2023 Fiscal Year Research-status Report
周期と Coxeter 変換から見た Frobenius 構造
Project/Area Number |
22K03295
|
Research Institution | Bunkyo University |
Principal Investigator |
佐竹 郁夫 文教大学, 教育学部, 教授 (80243161)
|
Project Period (FY) |
2022-04-01 – 2026-03-31
|
Keywords | コクセター変換 / 楕円ルート系 |
Outline of Annual Research Achievements |
有限コクセター群の場合に、コクセター変換を用いて good invariant を定義したが、これについて具体例を計算し、修正中の論文に加えることができた。 楕円ルート系から得られる楕円ワイル群不変式について、admissible triplet と呼ばれるデータ(本質的にコクセター変換のデータ)を固定することで、Good invariant を定義した。これは楕円ワイル群についての商空間に入るフロベニウス構造を再定義するものであった。これについていくつか明確になった。1つは、Good invariant について、余次元 1 の場合には、Good invariant は一意的であったが、余次元が 1 でない例として、$A^{(1,1)}_1$ 型の場合に詳しく計算し、この場合には Good invariant が admissible triplet の取り方に依存し、一意的でないことを具体的に示すことができた。もう1つは、admissible triplet の存在証明について、以前は admissible triplet を実際に構成することで存在を示していたため、どこが非自明かが明確でなかったが、admissible triplet の条件を分解することで、一般的に成り立つことと非自明な部分を分離することができ、明確な議論となった。 ここには、楕円ワイル群が作用する空間について、「canonical decomposition」を見出したことが用いられる。 この分解は、複素解析的な分解ではないが canonical な直積分解であり、複素構造を用いずに定義できる楕円 Artin 群や double affine Hecke algebra へのモジュラー群作用についての研究に効果的に用いられると期待される。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
これまでの研究を整理することで見出した、canonical decomposition が、Coxeter 変換や Good invariant の研究に有用なだけでなく、楕円アルティン群の研究や、double affine Hecke 環の研究に資することを見出すことができた。
|
Strategy for Future Research Activity |
これまでの定式化では、Good invariant を Coxeter 変換を1つ固定して議論してきたが、モジュラー群作用についても込みにして議論することが望ましい。これについて以前構築した$O(2,n)$ を用いた定式化を合わせることで研究を進めていきたい。
|
Causes of Carryover |
次年度使用額が生じた理由:予定していた海外出張に行くことができなかったため。 使用計画:研究交流の幅を広げてより広い範囲の研究者との交流を深めるため、より多くの研究会や研究連絡に参加することを考えている。
|
Remarks |
周期写像、鏡映群不変式論、その数理物理的側面について、筑波大学大学院にて集中講義を行った。
|
Research Products
(1 results)