• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

Uniformization of 4-orbifolds and gauge theory

Research Project

Project/Area Number 22K03322
Research InstitutionRitsumeikan University

Principal Investigator

福本 善洋  立命館大学, 理工学部, 教授 (90341073)

Project Period (FY) 2022-04-01 – 2025-03-31
Keywords4次元軌道体 / ホモロジー同境 / Donaldson理論 / Seiberg-Witten理論 / ホモロジー同境群 / 指数定理 / スプライシング / 有理ホモロジー球面
Outline of Annual Research Achievements

今年度は,計画当初の予定であった負定値閉4次元軌道体の有限一意化の可能性に関する課題a,並びに課題b: 「2次元の特異集合をもつ負定値とは限らない4次元閉軌道体に対して,特異集合の管状近傍を除いてシリンダーを貼り合わせた管状の端を持つ 4 次元多様体のSU(2)束と特異集合のリンクに定めた平坦接続のインスタントン・モジュライ空間において,無限遠に逃げていくインスタントンの極限として平坦接続が生成される状況を考察せよ.」に関連して,Seiberg-Witten理論の側面から以下の結果を得た.
1) 2次元の特異集合が与えられた閉スピン4次元軌道体に対して有限一意化が得られるため特異集合に関する必要条件を,閉スピン4次元軌道体に対する10/8不等式を応用することにより,Dirac作用素の指数への特異点の情報からの寄与を用いて与えた.特に鉛管型4次元軌道体が,例外集合をなす軌道面の管状近傍を与える場合において明示的な公式を得た.
また一方で,有理ホモロジー3球面上の結び目で分岐する有理ホモロジー3球面のbounding genusに関する課題cとの関連において以下の結果を得た.
2) 結び目の補空間のスピン構造が,結び目の巡回分岐被覆のスピン構造を誘導するための必要十分条件を与えた.特に,Brieskornホモロジー3球面はトーラス結び目の巡回分岐被覆として捉えることができることから,結び目のbounding genusの,その巡回分岐被覆であるBrieskornホモロジー3球面のNeumann-Siebenmann不変量による下界評価を得た.
これによりトーラス結び目のbounding genusをBrieskornホモロジー3球面のNeumann-Siebenmann不変量および4球体種数によって評価し,これらの挙動を考察することが可能となる.

Current Status of Research Progress
Current Status of Research Progress

4: Progress in research has been delayed.

Reason

2022年度では,サンクトペテルブルグで開催予定であった国際数学者会議に参加し,研究発表を行う計画であったが,COVID-19の世界的流行を受け,バーチャル開催となったこと,および海外渡航が引き続き困難であったことに加え,それにともなう教育・研究環境の整備および運用のマネジメントが行き届かなかったことで,遠隔地間での研究打ち合わせや研究発表をはじめとした研究者間の交流が十分に行えなかった現状がある.また課題a,b,cにおいてSeiberg-Witten理論の側面からの研究を優先させたため,Donaldson理論の側からの研究に十分な時間を掛けることができていなかったことも影響している.

Strategy for Future Research Activity

1)の「2次元の特異集合を持つ4次元軌道体上のインスタントン・モジュライ空間の解析」に関して,Kronheimer-Mrowkaの研究では曲面を特異点とする4次元軌道体上のインスタントンとして特異インスタントンのモジュライ空間を考察し,モジュライ空間の標準的な向き付けに関する詳細な議論を行っている.特に課題aにおけるより簡単な状況として以下の課題に取り組む.
a-1) 4次元軌道体の特異点が孤立点である場合において,特異点でバブルが発生した後に平坦接続が現れる状況とインスタントンのモジュライ空間の向きとの関係を明らかにする.
当面は重み付き複素射影平面の考察をはじめとして,この課題に注力し解決を図る.

Causes of Carryover

2022年度では,サンクトペテルブルグで開催予定であった国際数学者会議に参加し,研究発表を行う計画であったが,COVID-19の世界的流行を受けバーチャル開催となったこと,および海外渡航が引き続き困難であったことに加え,国内においても比較的最近まで研究集会等はその多くが対面参加者の制限およびオンラインの開催となったことによる.2023年度では,米国インディアナ大学に滞在し,Paul Kirk氏との共同研究,および研究発表を行う予定としており,この渡米滞在を可能な限り実施するとともに,近年において研究手段として定着してきた遠隔地間での研究打ち合わせや研究発表をはじめとする通信および,クラウド数式処理システムをはじめとする電子的な研究環境の高度化に使用する計画である.

  • Research Products

    (1 results)

All Other

All Remarks (1 results)

  • [Remarks] Yoshihiro Fukumoto's Homepage

    • URL

      http://www.math.ritsumei.ac.jp/~yfukumot/index.html

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi