2023 Fiscal Year Research-status Report
固有値の高速高精度数値計算手法の開発とその数理モデリングへの応用
Project/Area Number |
22K03422
|
Research Institution | Hosei University |
Principal Investigator |
相島 健助 法政大学, 情報科学部, 教授 (40609658)
|
Project Period (FY) |
2022-04-01 – 2027-03-31
|
Keywords | 数値線形代数 |
Outline of Annual Research Achievements |
説明変数が誤差を含む線形回帰モデルに対する収束理論の拡張を行った.具体的には,いくつかの制約を課した場合の回帰モデルの推定量の一致性を証明した.従来の線形回帰モデルに対しては,(全)最小二乗法による推定量が一致性を有することは知られていたが,この回帰モデルに変数の制約や行列ランクに関する制約を課した場合の統計的な漸近論は明らかにされないままであった.本研究では,行列の固有値の数値計算に用いられる射影法の特徴に着目し,上記の制約付きのモデルに対する一致推定量を構成し,実際に一致性を数学的に証明した.本研究は国際会議で発表し,論文にまとめている.
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
本研究は固有値計算アルゴリズムを軸に数理モデルに対する解析を目的にしている.確率的な誤差を含むモデルに対して一致推定量を構成し,一致性の厳密な証明を与えたことで,順調に目的達成に向かっていると言える.
|
Strategy for Future Research Activity |
線形回帰モデルと固有値計算のための射影法は,統計学と数値解析学において基本となる重要なものである.その両者の関係に着目し数学的に重要な成果をあげたことで,今後はより現代的なモデルや計算技術に対しても,重要な数学的性質を明らかにできる可能性が生じ,今後はその方向性で研究を進めることになる.
|
Causes of Carryover |
研究に進展があり成果をまとめるための時間を要し,発表と論文に関する費用を次年度以降に使用する予定とした.
|