• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

量子代数曲線と対称性から探る、超共形場の理論と超弦理論

Research Project

Project/Area Number 22K03598
Research InstitutionOsaka Metropolitan University

Principal Investigator

森山 翔文  大阪公立大学, 大学院理学研究科, 教授 (80402452)

Project Period (FY) 2022-04-01 – 2025-03-31
Keywords弦理論 / M理論 / M2ブレーン / チャーン・サイモンズ理論 / パンルヴェ方程式 / q変形 / 双線形関係式 / アフィンワイル群
Outline of Annual Research Achievements

M理論のM2ブレーンを記述するABJM理論やその拡張となる超対称チャーン・サイモンズ理論は可積分対称性を持つと期待される。本年度では研究代表者らの先行研究で調べてきた四点円周クイバー型の超対称チャーン・サイモンズ理論の分配関数についてさらに詳しく解析を進めた。四点円周クイバー理論はD5代数のワイル群の対称性を持つ量子代数曲線に対応し、その対応から、同じくD5曲線に対応するq変形された第6パンルヴェ方程式との関連が期待されている。
本研究において、まず最低の全体ランクを持つ場合に円周クイバーが線形クイバーに退化することに着目し、様々な相対ランクで最低ランクの分配関数をFIパラメータの関数形として厳密に評価した。最低ランクの分配関数は既に多くの非自明な内容を持つ。例えば、先行研究によれば超対称性を保つには相対ランクが限られた領域に限定されるが、この領域でのみ分配関数が非零になることを確認できた。また、q変形第6パンルヴェ方程式はタウ関数の双線形関係式による実現が知られているので、最低ランクの分配関数に対して同様の双線形関係式を探索した。その結果、40個の非自明な係数を持つ双線形関係式を発見した。双線形関係式はD5アフィンワイル群構造を明示的に保つが、関係式の係数までそのワイル群を尊重するとは限らない。そのため、係数を含めて40個の関係式を特定したことは重要な意義を持つ。さらに、最低ランクの分配関数を大正準分配関数の最低次と見なすことにより、40個の双線形関係式が大正準分配関数の関係式に拡大することも発見した。
類似の先行研究と比較して、本研究では、最低ランクの分配関数による全体的な係数の意味付け、高次係数のワイル群不変性など様々な点が改良され、超対称チャーン・サイモンズ理論とパンルヴェ方程式の関係がより明確になった。本研究成果は発表準備中である。

Current Status of Research Progress
Current Status of Research Progress

3: Progress in research has been slightly delayed.

Reason

本年度は大学統合初年度の物理学科専攻長に選出され、専攻長業務のため研究に十分に時間を使うことができなかった。

Strategy for Future Research Activity

本年度で専攻長の任期が終了するため、次年度は研究に専念する予定である。次年度は国内外の研究会に参加し、研究成果発表とともに、関連分野の研究者と議論することによりABJM理論やその拡張の可積分性の解明をさらに進めたい。

Causes of Carryover

本年度は大学統合初年度の物理学科専攻長に選出され、専攻長業務のため研究に十分に時間を使うことができなかった。本年度で専攻長の任期が終了するため、次年度は研究に専念する予定である。次年度は国内外の研究会に参加し、研究成果発表とともに、関連分野の研究者と議論することによりABJM理論やその拡張の可積分性の解明をさらに進めたい。

  • Research Products

    (5 results)

All 2023 2022

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 1 results,  Invited: 2 results)

  • [Journal Article] Duality cascades and parallelotopes2023

    • Author(s)
      Tomohiro Furukawa, Sanefumi Moriyama, Hikaru Sasaki
    • Journal Title

      Journal of Physics A: Mathematical and Theoretical

      Volume: 56 Pages: 165401

    • DOI

      10.1088/1751-8121/acc2fb

    • Peer Reviewed
  • [Journal Article] Duality cascades and affine Weyl groups2022

    • Author(s)
      Tomohiro Furukawa, Kazunobu Matsumura, Sanefumi Moriyama, Tomoki Nakanishi
    • Journal Title

      Journal of High Energy Physics

      Volume: 05 Pages: 132

    • DOI

      10.1007/JHEP05(2022)132

    • Peer Reviewed / Open Access
  • [Presentation] M2-branes -Parallelotopes and Bilinear Relations-2023

    • Author(s)
      Sanefumi Moriyama
    • Organizer
      Osaka Metropolitan University "Quantum Field Theories and Representation Theory"
    • Int'l Joint Research / Invited
  • [Presentation] 双対カスケードと平行多面体2022

    • Author(s)
      森山翔文
    • Organizer
      京都大学基礎物理学研究所研究会「場の理論と弦理論 2022」
  • [Presentation] 双対カスケードと平行多面体2022

    • Author(s)
      森山翔文
    • Organizer
      名古屋大学多弦数理物理学セミナー
    • Invited

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi