2023 Fiscal Year Research-status Report
Data assimilation method based on physics-informed machine learning and its application to multiple simultaneous estimation of physical properties of coating films
Project/Area Number |
22K03909
|
Research Institution | Tokyo City University |
Principal Investigator |
白鳥 英 東京都市大学, 理工学部, 准教授 (10803447)
|
Project Period (FY) |
2022-04-01 – 2025-03-31
|
Keywords | PINNs / 物理ベース機械学習 / 液膜流れ / データ同化 |
Outline of Annual Research Achievements |
半導体デバイスやディスプレイのカラーフィルター等の微細加工プロセスでは、機能性樹脂と揮発性溶媒から成る液膜を基板に均一に塗布において種々の膜厚ムラが発生し、これが最終製品の寸法精度低下に直結する課題となっている。本研究では、この膜厚ムラを数値シミュレーションで予測する際に必要となる塗膜の物性値を、物理法則の機械学習法に基づいた新たなデータ同化法によって同定する方法の構築を目指している。具体的には、表面張力と粘性係数の複数の物性値を、膜厚分布という1種類の実測値から同時に同定する。
2年目にあたる2023年度はまず、前年度に原理部分を構築したデータ同化法について、膜厚分布から表面張力と粘性係数を同時に同定できるかを双子実験によって検証した。観測データに含まれるノイズレベルと同等の誤差で表面張力と粘性係数を動的できたことから、少なくとも原理部分の妥当性は確認できた。また、データ同化における損失関数のランドスケープを生成し、液膜への刺激の与え方や観測データのサンプリング方法によるランドスケープの凸性について把握し、局所最適の少ない測定条件を検討できるようにした。次に、膜厚の実測データを用いた妥当性検証を行うための実験系を構築した。液膜に液滴を落下させ、これによって生じる膜厚の時空間変動を光学干渉によって測定するシステムとし、観察にはハイパースペクトルカメラを導入した。構築した測定系による測定値の妥当性について、既存の低解像度の膜厚計による結果と比較して検証した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
申請時の研究計画に対して、検討の順序の入れ替え等は発生したものの、2年目の終了時点での到達目標は達成できている。最終年度に計画していた実測データを用いた妥当性検証に予定通り着手できる状況にある。
|
Strategy for Future Research Activity |
2024年度は主に以下の点を中心に進める。 まず、2023年度に構築した実験系を用いて、膜厚の時空間分布のデータを体系的に取得する。これを提案手法のデータ同化法に適用して表面張力と粘性係数を同定する。得られた結果の妥当性については、懸滴法や回転式粘度計などの従来手法による測定値と比較することで検証する。研究成果については国内・国際学会にて発表すると同時に学術誌へ論文投稿する。
|
Causes of Carryover |
2023年度は実験系・測定系の構築を行ったが、当初計画よりも各パーツを安価に調達できた。残額については次年度の妥当性検証に用いるデータを増やすために、材料や基板等の消耗品に充てたい。
|
Research Products
(5 results)