2023 Fiscal Year Research-status Report
Autonomous Control of Heavy Machinery by Deep Reinforcement Learning for Automation of Skilled Work
Project/Area Number |
22K04273
|
Research Institution | Shibaura Institute of Technology |
Principal Investigator |
内村 裕 芝浦工業大学, 工学部, 教授 (00416710)
|
Project Period (FY) |
2022-04-01 – 2025-03-31
|
Keywords | 深層強化学習 / 土砂撒き出し / 建設作業の自動化 |
Outline of Annual Research Achievements |
建設労働者の減少・高齢化は喫緊の課題であり、施工機械による建設作業の自動化が期待されているが、不定型な土砂などを扱う土工事の自動化は難易度が高い。特にブルドーザによる土砂の撒き出し・整地作業のように、一旦押し出した土砂を引き戻すことが困難な場合は、目標の出来型形状に至る複数の工程を考慮した大局的な判断が必要であり高度な熟練を要する作業となる。そこで本研究では、土砂の状態変化に柔軟に対応する汎化性能を深層強化学習によって獲得することで熟練作業者に匹敵する重機の自律制御の実現を目指している。当年度においては、下記のように深層強化学習による撒き出し経路の最適化のための手法についての研究を進めた。 1) 深層強化学習の入力となる土砂山の形状をリアルタイムで計測する際のオクルージョンに対し,ディープラーニングによる学習によってデータを補間する手法を提案した。背景を含む施工対象の画像を取得し,機械学習によるセグメンテーションを用いて施工対象の土砂山のみを切り抜き,更にディープラーニングモデルを用いて土砂山の形状を推論した。 2)ブルドーザオペレータから見た土砂山の画像と周辺情報から3次元情報を生成せずに,従来より少ない回数で高い充填率の撒き出しを達成した。 3)連続した撒き出しを想定し,撒き出しを繰り返す過程の充填率を高水準かつ少ない回数で効率的に行うため,目標範囲を更新し連続した撒き出しを繰り返すことのできる経路生成手法を提案した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
土砂山のオクルージョンに対する推定精度を向上するとともに,オペレータ視点からの情報のみで撒き出しを行う事を可能にするなど,当初の想定を超えて,実用化を視野に入れた検討にも踏み込んで進めている点で順調に進んでいると判断する。
|
Strategy for Future Research Activity |
シミュレーションの所要時間の増大の大きな要因である土砂撒き出しのシミュレーションに対し,初期形状に対するブレードの経路を入力した結果をディープラーニングで学習し,都度のシミュレーションに要する計測時間を削減することを目指す。また,産業用ロボットと使用した撒き出し実験装置を構築し,実際の土砂に対する提案手法の妥当性,精度を検証する予定である。
|
Causes of Carryover |
当該年度成果の国際会議での発表において新型コロナへの懸念から海外での発表を見送り国内開催での発表に切り替えたことによる航空費等を含む旅費が不要となったことが大きな理由である。翌年度においては,前年度分を含めた成果報告のための学会参加費,論文投稿費用に充当する予定である。
|