• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

Predictive modeling of dynamic and nonlinear structural behavior by machine learning and its application to computational morphogenesis

Research Project

Project/Area Number 22K04416
Research InstitutionThe University of Kitakyushu

Principal Investigator

藤田 慎之輔  北九州市立大学, 国際環境工学部, 准教授 (80775958)

Project Period (FY) 2022-04-01 – 2026-03-31
Keywords最適化 / 機械学習 / 構造形態創生 / 幾何学的非線形解析 / ニューラルネットワーク
Outline of Annual Research Achievements

初年度に行った幾何学的非線形応答の予測システムについて,予測精度の改善を試みた。
釣合経路そのものを予測することはなかなか困難ではあるものの,ラチスシェルの非線形座屈耐力については一定の精度で予測可能であることが数値実験から分かったため,当該予測モデルを利用した構造形態創生を試みた。
通常,幾何学的非線形解析を行うことでしか得られない非線形座屈荷重係数を最適化問題の設計変数として考慮することは計算時間の問題から現実的ではないが,本研究のように当該非線形解析を予測モデルによる予測に代替すれば,現実的な計算時間で比較的優良な解形態が得られることが確認された。研究成果は国内外の各学会での発表のほか,査読論文としてとりまとめた。
加えて,これまではあくまであらゆる形状・断面の構造物に対してその応答予測システムを構築し,その予測モデルを用いて形態創生を行うアプローチによって非線形問題を有限時間で扱うことのできる形態創生手法の提案を行ってきたが,最適解そのものを教師データとして機械学習させ,最適化問題の各種制約条件を入力変数とすることで即座に優良解の候補を算出するアプローチも有効であると考え,まずは平面骨組問題に対して前述のアプローチによる予測モデルの実装を行った。まだ予測精度の面で若干の問題が残されてはいるものの,一定の精度で最適解を予測可能であることが確認された。当該研究成果はまだ論文化していないが,次年度以降も継続して研究を続ける予定である。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

当初の最終目標の一つであった,3次元空間構造物の非線形挙動を機械学習により予測し,最適化手法の中に同予測モデルを組みこんだ形態創生を行うという研究は一定の成果を上げることができ,査読論文としてとりまとることができている。加えて,最適解そのものを教師データとして機械学習させ,最適化問題の各種制約条件を入力変数とすることで即座に優良解の候補を算出するという別のアプローチからの研究にも着手しており,一定の成果が得られつつある。動的問題に対しては2次元構造物に対する予測モデルの作成しか行っていないが,研究全体としては概ね順調に成果を上げられていると考えている。

Strategy for Future Research Activity

最適解そのものを教師データとして機械学習させ,最適化問題の各種制約条件を入力変数とすることで即座に優良解の候補を算出するというアプローチによる研究を引き続き発展させる。また,研究成果は査読付き論文として社会に公開をしているが,自身の実務経験を活かし,論文化するだけではなく,第3者が利用可能なソフトウェアとして実装することを試みる。具体的には,研究代表者が開発を続けているOpenSees for Grasshopperに当該機能を実装し,非線形解析も扱えるようにGUI含めて整える。成果物はGitHubを通じて全世界に公開する。

  • Research Products

    (5 results)

All 2024 2023

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (4 results) (of which Int'l Joint Research: 1 results)

  • [Journal Article] 機械学習を用いた単層ラチスシェルの非線形座屈荷重の予測および構造最適化2024

    • Author(s)
      YABUUCHI Yuma、FUJITA Shinnosuke
    • Journal Title

      Journal of Structural and Construction Engineering (Transactions of AIJ)

      Volume: 89 Pages: 75~85

    • DOI

      10.3130/aijs.89.75

    • Peer Reviewed / Open Access
  • [Presentation] Structural optimization of lattice shells with geometric nonlinearity using machine learning2023

    • Author(s)
      Y. Yabuuchi, S. Fujita
    • Organizer
      IASS 2023 Annual Symposium, Melbourne, Australia
    • Int'l Joint Research
  • [Presentation] 機械学習を用いた単層ラチスシェルの非線形力学特性の予測2023

    • Author(s)
      薮内佑馬,藤田慎之輔
    • Organizer
      第46回情報・システム・利用・技術シンポジウム
  • [Presentation] 機械学習により材料非線形性を考慮したラチスシェルの形状最適化2023

    • Author(s)
      薮内佑馬,藤田慎之輔
    • Organizer
      コロキウム構造形態の解析と創生2023
  • [Presentation] 機械学習により幾何学的非線形性を考慮したラチスシェルの形状最適化2023

    • Author(s)
      薮内佑馬,藤田慎之輔
    • Organizer
      日本建築学会大会(関西)構造I

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi