2022 Fiscal Year Research-status Report
Optimization of photocatalytic materials with a combination of analytical data and machine learning
Project/Area Number |
22K05158
|
Research Institution | Chuo University |
Principal Investigator |
片山 建二 中央大学, 理工学部, 教授 (00313007)
|
Co-Investigator(Kenkyū-buntansha) |
潘 振華 中央大学, 理工学部, 助教 (90870551)
|
Project Period (FY) |
2022-04-01 – 2025-03-31
|
Keywords | 太陽光水分解 / 機械学習 / 分析科学データ |
Outline of Annual Research Achievements |
太陽光エネルギーを活用した光触媒水分解は、次世代エネルギーの生成手段として期待されている。有望な新規物質が発見されると、多数の研究グループがその性能を再現するために追試を行うが、化学組成が同じでも、界面構造や不純物、厚みなどの微視的および巨視的状態が同じでなければ同様の性能を発揮することができない。本研究では、機械学習を用いて、各研究グループで環境に適した実験条件を適用できる方法論を確立し、高性能な材料やデバイスを提供することを目指している。デバイスの性能と実験条件は、簡単には関連付けられないため、デバイス材料の分析化学データを収集し、波形などのデータの特徴量を介在変数としてデバイス性能値と実験条件を機械学習的に接続した。この手法により、デバイス性能に重要な材料要因が分析化学データから抽出され、無限に続く実験操作の試行錯誤を経ることなく、新しい材料の分析データからデバイスや材料の最適化が可能になる。本年度は、具体的なテストとして、太陽光水分解材料として注目されるヘマタイトとバナジン酸ビスマスにこの手法を適用した。吸収スペクトル、X線回折パターン、ラマンスペクトル、電気化学インピーダンスデータを用いて材料性能を予測することに成功し、本研究について2報の学術論文に掲載された。
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
すでに2種類の材料にproof of conceptの研究を成功させ、学術誌に掲載される成果をえている。今後、本内容についての招待講演も予定されている。
|
Strategy for Future Research Activity |
さらに、光触媒材料の性能を特徴づける、助触媒の担持や欠陥改質を行って、さらに実デバイスに近い状態での材料最適化に取り組む。
|
Causes of Carryover |
使用予定であった、分析装置使用料が、想定以上に必要なかったため、次年度での分析データ収集に用いることとしたため。
|