2022 Fiscal Year Research-status Report
Project/Area Number |
22K13926
|
Research Institution | University of Tsukuba |
Principal Investigator |
松浦 浩平 筑波大学, 数理物質系, 助教 (90874355)
|
Project Period (FY) |
2022-04-01 – 2024-03-31
|
Keywords | 反射壁ブラウン運動 / 離散近似 |
Outline of Annual Research Achievements |
京都大学の日野正訓教授及びその指導学生であった真木新太氏との共同研究において、ユークリッド空間の領域上の反射壁ブラウン運動の離散近似に関する結果を得ることができた。この近似は領域の分割上のマルコフ連鎖を用いたものであり、重要な分割の例としては、一様かつ独立なランダム点配置から定まるボロノイ分割が挙げられる。この種の状況では、点配置が不均一であることに由来する問題が多く発生し、適切なマルコフ連鎖の構成自体が非自明なものとなる。本研究では、この種の不均一性を補正するため、均質化理論に見られるようなコレクターの導入が重要となった。また、反射壁ブラウン運動の生成作用素であるノイマン・ラプラシアンの芯についても結果を得ることができた。本研究の結果を周知するため、国内の確率論セミナーで講演を行った。
ユークリッド空間の領域上の反射壁ブラウン運動の離散近似に関しては、領域内の格子点上の単純ランダムウォークを用いた先行研究があった。これは、ワシントン大学のK.Burdzy氏とZ.Q.Chen氏らによってなされたものである。証明では、ランダムウォークの列の部分列極限の存在を示し、更にそれがマルコフ性をもつことを確認する必要があった。マルコフ性の証明にあたっては、T.Delmotte氏による放物型ハルナック不等式が用いられていたが、別の方法による証明を与えた。これはマルコフ連鎖に対応する生成作用素のスペクトルギャップの定量評価を用いたものである。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
反射壁ブラウン運動の離散近似は本研究課題に深く関わるものであり、既存の研究にはなかった不均一性を伴う設定で証明を完成させることができたため。当該年度は初年度であるが、研究発表を通じ、離散近似に関する専門的な知識や技術を獲得することができたため。
|
Strategy for Future Research Activity |
まずは反射壁ブラウン運動の離散近似についての論文の執筆を完了させる。領域内の格子点上の単純ランダムウォークの列に対し、その部分列極限がマルコフ性をもつことは既に知られていた。しかし、本年度で与えた別証明はこれまでになかったものであり、より一般的な文脈で通用するか検証したい。polynomial diffusionの道ごとの一意性及び一様領域上の反射壁ブラウン運動の境界局所時間の研究については、国内外の研究集会への参加やそこでの発表を通じ、問題解決に必要な知見を広げる。
|
Causes of Carryover |
コロナウイルスの影響により、現地参加を予定していた研究集会やセミナーの一部がオンラインで行われることになったため。また、現地訪問による研究打ち合わせを見合わせることになったため。次年度使用額は、国内外の研究集会で研究発表を行い結果の周知を行うための旅費、また関連分野の専門家らを招聘あるいは訪問し議論を行うための旅費に充当する予定である。
|