• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

On an overdetermined problem for composite materials

Research Project

Project/Area Number 22K13935
Research InstitutionTohoku University

Principal Investigator

Cavallina Lorenzo  東北大学, 理学研究科, 助教 (40881264)

Project Period (FY) 2022-04-01 – 2026-03-31
Keywords優決定問題 / 形状微分 / 陰関数定理 / 楕円型偏微分方程式 / 分岐解析 / 二相問題 / 対称性
Outline of Annual Research Achievements

本年度報告する主な研究成果は以下のものである。
① 論文[C.,J.Differ.Equ.,2024]では、パラメータが付いた形状汎関数の臨界形状の局所的な挙動を明らかにする手法を提案した。先行研究では、二相Serrin型優決定問題の摂動解の局所存在とねじり剛性汎関数に対する複合媒質の退化性の関係が指摘されていたが、この論文では一般論の構築に成功した。
② 論文[C.,J.Geom.Anal.,2024]では、ある連続回転群に対して不変な優決定問題の解の研究を行った。具体的には、形状汎関数の臨界形状として定式化される優決定問題の非退化な解は優決定問題と同じ対称性を共有ことを示した。その結果、二相Serrin型優決定問題の非退化な最良母体が与えられた介在物の対称性を遺伝することが分かった。
③ 論文[C.,Interfaces Free Boundaries,掲載決定(2024)]では、二相複合媒質と三相以上の多相複合媒質との違いを明らかにした。一相、二相の場合と異なり、k相(k≧3)の場合には、境界に課されたk個の優決定条件を満たす球対称でないk相複合媒質が存在することが示された。
④ 論文[C.,Math.Mag.,掲載決定(2024)]では、形状最適化問題の研究に不可欠な「形状微分」を用いて、ピタゴラスの定理や正弦定理、余弦定理の別証明が与えられた。
さらに、G. Poggesi 氏(西オーストラリア大学)と共同で、内部からの有限の観測データをもとに、複合媒質の球対称性に関する研究に取り組んだ。現在、二相複合媒質の場合において完全な特徴づけに成功し、その研究成果を学術雑誌に投稿中である。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

二相Serrin型優決定問題及び関連する多相型優決定問題における非自明解の存在について考察し、精密な局所解析を行うことができた。また、形状汎関数の臨界点(臨界形状)として定式化できる優決定問題(変分型優決定問題)の解の近傍における局所的な挙動はその解の退化性を用いて特徴づけられることが明らかとなった。

Strategy for Future Research Activity

介在物と母体からなる複合媒質における楕円型優決定問題(二相Serrin型優決定問題)の非対称解(非自明解)とこれらが成す族における、より精密な解析を行うことを今後の研究の目的とする。特に、非自明解の大域的解析に重点を置いて研究を進める予定である。具体的には、以下の課題に挑戦する予定である。
① 定量的Cauchy-Kovalevksayaの定理とBanach空間上の陰関数定理を組み合わせることによって、解析的曲面の枠組みにおいて、本優決定問題に対する逆問題である「内部問題」の局所一意可解性を証明する。
② 任意に与えられた一般の開集合(連結とは限らない)を介在物とした解の構成に努める。
③ 介在物を固定した上で、解(自由境界)の族が成す(葉層)構造を考察する。
④ 界面エネルギー(Kapitza抵抗)を伴う複合媒質におけるSerrin型優決定問題に既存の結果を拡張する。
⑤ 本問題で培ったノウハウを他の自由境界問題(流体力学における定常渦の自由境界問題、ポテンシャル論に由来する自由境界問題等)に適用する。

Causes of Carryover

海外共同研究者との直接的な相互訪問は困難であったため。
令和6年度請求額と合わせ、 令和6年度の研究遂行に有効に使用する予定である。

  • Research Products

    (16 results)

All 2024 2023 Other

All Int'l Joint Research (3 results) Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 9 results)

  • [Int'l Joint Research] 西オーストラリア大学(オーストラリア)

    • Country Name
      AUSTRALIA
    • Counterpart Institution
      西オーストラリア大学
  • [Int'l Joint Research] ロレーヌ大学(フランス)

    • Country Name
      FRANCE
    • Counterpart Institution
      ロレーヌ大学
  • [Int'l Joint Research] フィレンツェ大学(イタリア)

    • Country Name
      ITALY
    • Counterpart Institution
      フィレンツェ大学
  • [Journal Article] Nondegeneracy implies the existence of parametrized families of free boundaries2024

    • Author(s)
      Cavallina Lorenzo
    • Journal Title

      Journal of Differential Equations

      Volume: 383 Pages: 1~23

    • DOI

      10.1016/j.jde.2023.11.011

    • Peer Reviewed / Open Access
  • [Journal Article] Symmetry and asymmetry in a multi-phase overdetermined problem2024

    • Author(s)
      Cavallina Lorenzo
    • Journal Title

      Interfaces and Free Boundaries (to appear)

      Volume: - Pages: -

    • Peer Reviewed
  • [Journal Article] Pythagorean Theorem, Law of Sines and Law of Cosines: alternative proofs via shape derivatives2024

    • Author(s)
      Cavallina Lorenzo
    • Journal Title

      Mathematics Magazine (to appear)

      Volume: - Pages: -

    • Peer Reviewed
  • [Journal Article] Why are the Solutions to Overdetermined Problems Usually “As Symmetric as Possible”?2023

    • Author(s)
      Cavallina Lorenzo
    • Journal Title

      The Journal of Geometric Analysis

      Volume: 34 Pages: 1~22

    • DOI

      10.1007/s12220-023-01467-8

    • Peer Reviewed / Open Access
  • [Presentation] How much overdetermination is enough to get symmetry in two-phase problems2024

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      2024 Japan-Korea Workshop on Nonlinear PDEs and Its Applications, 広島大学
    • Int'l Joint Research / Invited
  • [Presentation] How to characterize radial symmetry in two-phase conductors by overdetermined conditions on the level sets of the torsion function2024

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      Mt. Aoba Analysis and Geometry miniworkshop, 東 北大学
    • Int'l Joint Research / Invited
  • [Presentation] 等位集合における優決定条件を用いた複合媒質の球対称性の特徴づけ2024

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      関西大学 確率論研究会 2024, 関西大学
    • Invited
  • [Presentation] A characterization of radial symmetry for composite media by overdetermined level sets2024

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      Geometric PDE and Applied Analysis Seminar, 沖縄科学技術大学院大学 (OIST)
    • Int'l Joint Research / Invited
  • [Presentation] A characterization of radial symmetry for composite media by overdetermined level sets2024

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      UWA Analysis Seminar, 西オーストラリア大学 (Perth)
    • Int'l Joint Research / Invited
  • [Presentation] 多相優決定問題における対称性と非対称性について2023

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      談話会, 東北大学
    • Invited
  • [Presentation] On symmetry and asymmetry in a multi-phase overdetermined problem2023

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      京都大学 NLPDE セミナー, 京都大学
    • Invited
  • [Presentation] Symmetry and asymmetry in a multiphase overdetermined problem2023

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      RIMS 合宿型セミナー “Homogenization and/or nonlocal operators”, Hakobune Niseko
    • Int'l Joint Research / Invited
  • [Presentation] Face 2-phase: how much overdetermination is enough to get symmetry in multi-phase problems2023

    • Author(s)
      Cavallina Lorenzo
    • Organizer
      1 day workshop, 慶応大学
    • Int'l Joint Research / Invited

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi