• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

All optical switching devices based on microcavities with two-dimensional materials

Research Project

  • PDF
Project/Area Number 22K14624
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 30020:Optical engineering and photon science-related
Research InstitutionNational Institute of Advanced Industrial Science and Technology (2023)
Institute of Physical and Chemical Research (2022)

Principal Investigator

Yamashita Daiki  国立研究開発法人産業技術総合研究所, エレクトロニクス・製造領域, 研究員 (40858099)

Project Period (FY) 2022-04-01 – 2024-03-31
Keywordsシリコンフォトニクス / 二次元材料 / 光スイッチ / フォトニック結晶 / 微小共振器
Outline of Final Research Achievements

This study aimed to create a high-speed and energy-efficient optical switch using two-dimensional layered semiconductors. We achieved this by utilizing refractive index modulation induced by photo-absorbed carriers when a laser is directed onto two-dimensional materials on a micro-optical resonator. Initially, we developed a device that could modulate the refractive index while maintaining the Q-factor of a silicon photonic crystal nanobeam optical resonator. Subsequently, we assessed the characteristics of the optical switch operation and examined the dynamics of photo-generated carriers. Using the two-dimensional material MoTe2, we successfully produced a device capable of achieving a high-speed switching time of 33ps and demonstrated energy efficiency, requiring only about 200~300fJ for switching energy. This research has the potential to contribute to the advancement of future communication technologies.

Free Research Field

光工学および光量子科学関連

Academic Significance and Societal Importance of the Research Achievements

本研究の意義は、シリコンフォトニックデバイスに新しい機能性材料である二次元材料を集積し、ハイブリッドデバイスを開発することで、シリコンの材料限界を超えた高速・省エネ光スイッチングを実証したことです。具体的には、二次元層状半導体を屈折率変調材料として用いた微小共振器型光スイッチの研究を行い、大きな屈折率変調が可能な材料とそれを最大化する共振器構造を組み合わせることで、従来の同型の光スイッチデバイスを超える性能を実現しました。この研究により、将来の通信技術の発展に寄与することが期待されます。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi