• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

皮質脳波の非線形ダイナミクスを用いたリアルタイム脳情報解読

Research Project

Project/Area Number 22K15623
Research InstitutionOsaka University

Principal Investigator

福間 良平  大阪大学, 大学院医学系研究科, 特任助教(常勤) (20564884)

Project Period (FY) 2022-04-01 – 2024-03-31
Keywords非線形ダイナミクス / 皮質脳波
Outline of Annual Research Achievements

Dynamic mode decomposition (DMD)を用いることで、多数の計測点で観察された非線形ダイナミクスから事前知識なくモデルを構築することができる。我々の先行研究において、DMDを用いることで頭蓋内脳波から上肢運動内容を高精度で推定できることを示していたが、一方で推定に時間がかかる欠点があった。我々は数式変形を行うことで、トライアルごとに独立な特徴量を得ることで、計算時間を短縮し、正則化の適用を可能とした(特許申請中)。
本年度は新たに得られた脳波特徴量(DMD特徴量)の神経科学的性質を明らかにすることを試みた。まず、上肢運動時の頭蓋内脳波から得られたパワーとDMD特徴量を比較した。結果、DMD特徴量の一部はパワーと高い相関を示し、さらに同じ運動を行ったトライアル間でより高い再現性を示すことが明らかになった。即ちDMD特徴量の一部は再現性の高いパワーとしての挙動を示すことが分かった。他のタスクをデコードするにあたってもDMD特徴量がパワーよりも有効であることを示すために、我々の先行研究で用いた動画視聴覚中の皮質脳波に対しても同様の解析を行った。この結果、DMD特徴量を用いるとパワーを用いるよりも高い精度で動画の意味内容が推定可能であることが明らかになった。さらにDMD特徴量の一部は、上肢運動時タスクのように、再現性の高いパワーとしての挙動を示すことが明らかになった。また、予備的な解析でDMD特徴量が他のモダリティにも有効であることが示唆された。

Current Status of Research Progress
Current Status of Research Progress

1: Research has progressed more than it was originally planned.

Reason

DMD特徴量がトライアル間で再現性の高いパワーとしての振る舞いをすることを示すことが出来たため。

Strategy for Future Research Activity

予備的な解析でDMD特徴量が他のモダリティにも有効であることが示唆されたため、MEGやfMRIといった他のモダリティからの脳情報解読を試み、DMD特徴量の神経科学的性質を詳しく調査していく。また、得られた結果を論文として報告する。

Causes of Carryover

予備的な解析でDMD特徴量が他のモダリティにも有効であることが示唆されたため、当初予定していたリアルタイム実装ではなくDMD特徴量の神経科学的性質の解明に重点を移したため、計算機の選定が遅れた。既に解析用の高性能計算機を発注済みである。

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi