• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Research-status Report

Development of a fast molecular dynamics simulation method using deep learning

Research Project

Project/Area Number 22K17993
Research InstitutionTokyo Medical and Dental University

Principal Investigator

林 周斗  東京医科歯科大学, 難治疾患研究所, プロジェクト准教授 (30902332)

Project Period (FY) 2022-04-01 – 2025-03-31
Keywords深層学習 / 分子動力学シミュレーション / タンパク質 / 機械学習
Outline of Annual Research Achievements

深層学習を用いた高速分子動力学シミュレーション手法の開発に関して以下の成果を得た。
1. 学習データセットの準備:さまざまなタンパク質に対して古典分子動力学シミュレーションを実行し、深層学習モデルのための学習データセットを作成した。分子動力学シミュレーションに入力する初期立体構造としてAlphaFold2(Jumper, J. et al., Nature, 2021)を用いて計算されたタンパク質立体構造を利用した。
2. 深層ニューラルネットワークの開発:高速な分子動力学シミュレーションを目的とした深層ニューラルネットワークの開発を行った。具体的にはタンパク質原子の各座標・速度・力・原子種を入力として、一定時間後の座標・速度・力を予測する深層ニューラルネットワークを構築した。力学には回転同変性、鏡映同変性、平行移動同変性、置換同変性が存在するため、これらの同変性を備えた深層ニューラルネットワークを設計した。またシミュレーションの高速化のため、本モデルは溶媒原子を入力として受け取らず、溶媒原子がタンパク質原子に及ぼす相互作用も同時に学習させた。
3. 深層ニューラルネットワークの学習:1で取得した学習データセットを用いて、64フェムト秒後の座標・速度・力を予測する深層ニューラルネットワークの学習を行った。ベンチマークデータセットを用いた検証を行い、このモデルが10^(-2)オングストロームスケールの精度、および約20倍の高速化を達成していることを確認した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

深層ニューラルネットワークの構築、および学習に必要なデータセットの取得は概ね完了した。また、ベンチマークデータセットを用いた検証により、このモデルの有用性を評価することができた。

Strategy for Future Research Activity

本研究で開発した深層ニューラルネットワークを用いて長時間の分子動力学シミュレーションを行うためには、モデルにより推論された原子座標・速度・力を再度モデルに入力するという操作を何度も繰り返す必要がある。しかしながら、一般的にこのような操作を行うと推論結果は不安定になり分子構造の破綻を招く。そのため、今後の研究では分子構造を安定に保ったままシミュレーションを行うことのできる技術の開発を目指す。

Causes of Carryover

学習データセットの取得、および深層ニューラルネットワークの学習に関して、当初想定していたよりも小さな計算資源で実行することができたため次年度使用額が発生した。しかしながら、安定的な長時間シミュレーションを実行するには現在のモデルでは不十分であるとの知見も得られた。そのため、次年度使用額は安定的なシミュレーションを実現する深層ニューラルネットワーク技術の開発のための経費に充てる。

  • Research Products

    (1 results)

All 2022

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results)

  • [Journal Article] Bayesian statistical method for detecting structural and topological diversity in polymorphic proteins2022

    • Author(s)
      Hayashi Shuto、Koseki Jun、Shimamura Teppei
    • Journal Title

      Computational and Structural Biotechnology Journal

      Volume: 20 Pages: 6519~6525

    • DOI

      10.1016/j.csbj.2022.11.038

    • Peer Reviewed / Open Access

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi