2023 Fiscal Year Research-status Report
光格子重元素を用いた量子多体系における弱い相互作用の研究
Project/Area Number |
22K18273
|
Research Institution | The University of Tokyo |
Principal Investigator |
酒見 泰寛 東京大学, 大学院理学系研究科(理学部), 教授 (90251602)
|
Co-Investigator(Kenkyū-buntansha) |
長濱 弘季 東京大学, 大学院理学系研究科(理学部), 助教 (00804072)
|
Project Period (FY) |
2022-06-30 – 2026-03-31
|
Keywords | パリティ対称性の破れ / アナポールモーメント / 光格子 |
Outline of Annual Research Achievements |
原子核媒質中での弱い相互作用の伝搬機構を探るために、量子多体系における空間反転対称性の破れの検出を目指す。特に、原子核におけるパリティ対称性を破る観測量であるアナポールモーメント(AM)は、質量数の2/3乗に比例して増幅されることに着目して、原子量最大のアルカリ原子・重元素・フランシウム(Fr)のAMの高精度測定手法の開発を行う。 本年度は、2種類のFrの同位体のうち、Fr-221のgeneratorとなるAc-225の高強度線源の製作技術を確立し、同時に、Ac-225から放出されるFr-221の高強度低速中性原子ビームの生成を確認した。Thから分離精製したAcを用いて、分子電着法により高強度Ac線源を実現し、このAc線源の表面にイットリウム(Y)を成膜することで、Acから崩壊・放出されるFr-221をY膜中で停止・加熱することで、Y表面からFr-221中性原子線としてMOTに供給する構造とした。 さらに、Frを捕獲するための磁気光学トラップ(MOT)は準備が整っており、この冷却Fr原子をさらに冷やして一原子づつトラップするための光格子(OL)用高強度のレーザー光の開発を完了した。本研究では、1064 nm のCWレーザー光を10 W 以上まで増幅するYb添加ファイバー増幅器 (YDFA) を開発し、所定の性能が発揮できていることを評価した。放射線環境下においてはYDFAを構成する半導体レーザー光源や光ファイバーが損傷を受けるリスクがありため、容易に入手可能な部品を組み合わせ、ファイバー融着技術を駆使して自作することで、放射線損傷による破損の際にも自前で復旧できる構造とした。これで、Frの冷却・トラップのための2種類の装置(MOT/OL)に必要な光源の準備は完了した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
本年度は、Frのアナポールモーメントの量子計測の心臓部に当たる2つの技術開発を完遂した。一つ目が、Fr-221の中性原子線であるが、これは、Ac線源にイットリウム(Y)を30umの厚さで成膜することで、α崩壊してAcから放出されるFr-221をY膜中で完全に停止させ、同時に加熱することで、表面中性化によりY表面から中性Fr原子線として放出させる構造である。この方法は、国際的にも初めての構成となっており、Y膜の厚さを変えながら、Frの透過・停止・放出の膜厚・温度依存性を測定することで、Fr-221の原子線強度が所定の収量となることを確認した。このプロセスは、①東北大・金属材料研究所・アルファ放射体実験室でのThからAcの分離精製、そして②Acを硝酸塩として液体で理研に移動し、ホットラボで分子電着による高強度・高純度Ac線源の製造、そして、③Y成膜と加熱によるFr原子線の実現と、MOTに至るまでの3段階の技術過程を確立したことは、大きな進捗と考える。 さらに、MOTの後段に設置するアナポールモーメントを測定するための光格子技術の確立を行なった。光格子は、対向するレーザー光による定在波で形成される格子状のポテンシャルに原子を一つづつトラップする技術であるが、このためには、高強度レーザーが必要となる。本研究では、高い放射線量の環境下で実験を行う必要があることから、レーザー光源に対しても放射線損傷に強い構成とする必要があった。そこで、容易に入手可能な部品を組み合わせ、ファイバー融着技術を駆使して自作することで、放射線損傷による破損の際にも自前で復旧できる構造として、放射線環境下で長期間、安定して運用できるレーザーを実現したことは、大きな進展と考えている。
|
Strategy for Future Research Activity |
今年度で、Frの同位体の生成方法として、加速器を用いた方法と放射化学的手法を用いた手法の2種類を確立し、さらに、生成Frのレーザー冷却・トラップに必要なMOT・光格子のレーザー光源の開発も完了した。そこで、今後は、このFr線源の収量の高強度化を図りながら、Frのトラップの制御パラメータの最適化を進めていく。来年度、冷却Frのトラップにおいて、必要数量の原子数を実現し、その後、アナポールモーメント測定に向けた光共振器の実験を進めていく。
|
Causes of Carryover |
今年度、国際共同研究を行っているオランダ・フローニンゲン大学で開発された高周波粒子減速装置(RFQ)を東大に移設する予定であった。しかし、ウクライナ情勢やスエズ運河での貨物船攻撃の多発により、当初予定していたスエズ運河経由の搬送経路が通行不能となった。その結果、喜望峰迂回ルートでの搬送に変更せざるを得なくなり、予定が大幅に遅延しているため、来年度、装置到着後、搬送費用を支払う計画である。
|
Research Products
(6 results)